Golang笔记
Golang相关配置
golang 配置goproxy可选的地址
IDEA/Goland使用WSL作为默认Terminal
GoLand 2022.1-X专业版激活
Win下用WSL作为Goland终端交叉编译
MacOS下在Goland的Terminal中使用‘ll’命令无效
GoLand 2024.1.X专业版激活
Golang LeeCode练习题
一 Golang数组问题
28. [简单] 寻找数组的中心下标
27. [简单] 数组的度
26. [简单] 最长连续递增序列
25. [简单] 非递减数列
24. [简单] 图片平滑器
23. [简单] 子数组最大平均数 I
22. [简单] 重塑矩阵
21. [简单] 数组拆分 I
20. [简单] 最大连续1的个数
19. [简单] 找到所有数组中消失的数字
18. [简单] 移动零
17. [简单] 丢失的数字
16. [简单] 汇总区间
15. [简单] 存在重复元素 II
14. [简单] 存在重复元素
13. [简单] 多数元素
12. [简单] 两数之和 II
11. [简单] 买卖股票的最佳时机 II
10. [简单] 买卖股票的最佳时机
09. [简单] 杨辉三角 II
08. [简单] 杨辉三角
07. [简单] 合并两个有序数组
06. [简单] 加一
05. [简单] 最大子序和
04. [简单] 搜索插入位置
03. [简单] 移除元素
02. [简单] 删除有序数组中的重复项
01. [简单] 两数之和
29. [简单] 至少是其他数字两倍的最大数
30. [简单] 托普利茨矩阵
31. [简单] 较大分组的位置
32. [简单] 转置矩阵
33. [简单] 公平的糖果棒交换
34. [简单] 单调数列
35. [简单] 按奇偶排序数组
36. [简单] 卡牌分组
37. [中等] 盛最多水的容器
38. [中等] 三数之和
39. [中等] 最接近的三数之和
40. [中等] 四数之和
41. [中等] 下一个排列
42. [中等] 搜索旋转排序数组
43. [中等] 在排序数组中查找元素的第一个和最后一个位置
44. [中等] 组合总和
45. [中等] 旋转图像
Golang完整学习记录
第一章 Go语言简介
20220519@基础环境
20220518@概述
第二章 Go语言基本语法
20220520@基础语法
20220521@正弦函数
20220523@数据类型转换
20220523@指针概念
20220524@堆栈和逃逸分析
20220526@(模拟)枚举
20220528@类型别名
20220528@注释的使用
20220528@关键字与标识符
20220528@运算符的优先级
20220528@数据类型的转换
第三章 Go语言容器
20220531@容器概念
20220531@数组详解
20220531@多维数组
20220605@切片详解
20220606@append的常见操作
20220606@切片元素修改
20220609@多维切片简述
20220609@map映射
20220612@并发(sync)Map
20220614@list(列表)
20220614@nil值/空值/零值
20220615@new和make
第四章 Go语言控制流程
20220615@if分支结构
20220615@for循环
20220615@range遍历
20220615@switch
20220616@goto标签
20220616@break和continue
20220616@聊天机器人
20220620@词频统计
20220622@缩进排序
20220622@二分查找算法
20220622@冒泡排序
20220623@分布式id生成器
第五章 Go语言函数
20220623@函数声明
20220623@函数参数传递效果
20220627@字符串的链式处理
20220630@匿名函数
20220704@函数类型接口
20220704@闭包(Closure)
20220706@可变参数
20220706@defer延迟语句
20220709@递归函数
20220713@处理运行错误
20220714@宕机(panic)
20220714@宕机恢复(recover)
20220715@计算函数耗时
20220718@内存缓存提升性能
20220718@哈希函数
20220720@Test功能测试
第六章 Go语言结构体
20220726@结构体定义
20220726@为结构体分配内存
20220730@实例化结构体
20220803@初始化结构体成员变量
20220810@构造函数
20220816@方法和接收器
20220816@为基本类型添加方法
20220816@使用事件系统实现事件响应和处理
20220817@类型内嵌和结构体内嵌
20220817@结构体内嵌模拟类的继承
20220817@初始化内嵌结构体
20220818@内嵌结构体成员名字冲突
20220823@使用匿名结构体解析JSON数据
20220827@垃圾回收和SetFinalizer
20220828@结构体数据保存为JSON格式
20220901@链表操作
20220908@数据I/O对象及操作
第七章 Go语言接口
20220911@接口定义
20220915@实现接口的条件
20220918@类型与接口的关系
20220918@接口的nil判断
20020918@类型断言简述
20220929@多输出实现日志系统
20221009@排序(by sort.Interface)
20221106@接口的嵌套组合
20221107@接口和类型之间的转换
20221109@空接口类型(interface{})
20221107@空接口实现任意值的字典保存
20221112@switch类型分支
20221201@Error接口返回错误信息
20221229@表达式求值器
20221229@实现Web服务器
20221229@部署Go程序到Linux
20221229@音乐播放器
20221230@有限状态机(FSM)
20221230@二叉树数据结构的应用
第八章 Go语言包概念
20230206@包的基本概念
20230212@封装简介及实现细节
20220212@GOPATH详解
20230212@常用内置包简介
20230212@自定义包
20230212@package(创建包)
20230212@import导入包
20230213@工厂模式自动注册
20230213@单例模式
20230214@sync包与锁
20230215@big包实现整数的高精度计算
20230215@使用图像包制作GIF动画
20230216@正则regexp包
20230218@time包:时间和日期
20230219@go mod包依赖管理工具
20230219@os包用法简述
20230219@flag包:命令行参数解析
20230219@生成二维码
20230219@Context(上下文)
20230220@示例:客户信息管理系统
20230221@发送电子邮件
20230222@Pingo插件化开发
20230221@定时器实现原理及作用
第九章 Go语言并发
20230224@并发简述(并发的优势)
20230224@goroutine(轻量级线程)
202300226@并发通信channe简介
20230226@竞争状态简述
20230227@GOMAXPROCS(并发运行性能)
20230227@并发和并行的区别
20230227@goroutine和coroutine的区别
20230227@通道(channel)—goroutine之间通信的管道
20230227@并发打印(借助通道实现)
20230227@单向通道——通道中的单行道
20230301@无缓冲的通道
20230301@带缓冲的通道
20230302@channel超时机制
20230302@通道的多路复用
20230302@RPC(模拟远程过程调用)
20230304@使用通道响应计时器的事件
20230306@关闭通道后继续使用通道
20230306@多核并行化
20230306@Telnet回音服务器-TCP服务器的基本结构
20230307@竞态检测——检测代码在并发环境下可能出现的问题
20230310@互斥锁(sync.Mutex)和读写互斥锁(sync.RWMutex)
20230310@等待组(sync.WaitGroup)
20230310@死锁、活锁和饥饿概述
20230311@封装qsort快速排序函数
20230311@CSP:并发通信顺序进程简述
20230312@聊天服务器
20230313@如何更加高效的使用并发
20230313@使用select切换协程
20230313@加密通信
第十章 Go语言反射
20230317@反射(reflection)简述
20230318@反射规则浅析
20230319@反射的性能和灵活性测试
20230322@通过反射获取类型信息(reflect.TypeOf()和reflect.Type)
20230325@通过反射获取指针指向的元素类型(reflect.Elem())
20230325@通过反射获取结构体的成员类型
20230325@结构体标签(Struct Tag)
20230325@通过反射获取值信息(reflect.ValueOf()和reflect.Value)
20230326@通过反射访问结构体成员的值
20230326@判断反射值的空和有效性(IsNil()和IsValid())
20230327@通过反射修改变量的值
20230327@通过类型信息创建实例
20230327@通过反射调用函数
20230327@依赖注入(inject库)
第十一章 文件处理
20230327@自定义数据文件
20230328@JSON文件的读写操作
20230402@XML文件的读写操作
20230402@使用Gob传输数据
20230404@纯文本文件的读写操作
20230405@二进制文件的读写操作
20230405@自定义二进制文件的读写操作
20230405@zip归档文件的读写操作
20230405@tar归档文件的读写操作
20230408@使用buffer读写文件
20230409@实现Unix中du命令统计文件
20230410@从INI文件中读取配置
20240411@文件的读写追加和复制
202304111@文件锁操作
第十二章 Go语言编译与工具
20230411@go build命令使用
20230413@clean命令-清除编译文件
20230413@run命令-编译并运行
20230413@fmt命令-格式化代码文件
20230413@install命令-编译并安装
20230414@go get命令-获取代码编译并安装
20230414@go generate命令-在编译前自动生成某类代码
20230415@go test命令-单元和性能测试
20230415@go pprof-性能分析命令
20230415@Go语言与C/C++进行交互
20230415@Go语言内存管理简述
20230415@Go语言垃圾回收
20230415@Go语言实现RSA和AES加解密
Golang简单实战
Golang根据书籍ISBN爬取豆瓣评分和评论数
Go编写使用指定的CPU百分比消耗CPU资源
Golang的日常应用
使用 FFmpeg 进行实时码率检测
WSL的远程开发应用
WSL2设置静态IP
在WSL2中启动SSH
使用CentOS7作为Goland终端的修改项
Golang学习路线
Go开发者成长路线图
本文档使用 MrDoc 发布
-
+
home page
20220706@可变参数
在C语言时代大家一般都用过 printf() 函数,从那个时候开始其实已经在感受可变参数的魅力和价值,如同C语言中的 printf() 函数,Go语言标准库中的 fmt.Println() 等函数的实现也依赖于语言的可变参数功能。 本节我们将介绍可变参数的用法。合适地使用可变参数,可以让代码简单易用,尤其是输入输出类函数,比如日志函数等。 ## 可变参数类型 可变参数是指函数传入的参数个数是可变的,为了做到这点,首先需要将函数定义为可以接受可变参数的类型: ```go func myfunc(args ...int) { for _, arg := range args { fmt.Println(arg) } } ``` 上面这段代码的意思是,函数 myfunc() 接受不定数量的参数,这些参数的类型全部是 int,所以它可以用如下方式调用: ```go myfunc(2, 3, 4) myfunc(1, 3, 7, 13) ``` 形如...type格式的类型只能作为函数的参数类型存在,并且必须是最后一个参数,它是一个语法糖(syntactic sugar),即这种语法对语言的功能并没有影响,但是更方便程序员使用,通常来说,使用语法糖能够增加程序的可读性,从而减少程序出错的可能。 从内部实现机理上来说,类型...type本质上是一个数组切片,也就是[]type,这也是为什么上面的参数 args 可以用 for 循环来获得每个传入的参数。 假如没有...type这样的语法糖,开发者将不得不这么写: ```go func myfunc2(args []int) { for _, arg := range args { fmt.Println(arg) } } ``` 上面这段代码的意思是,函数 myfunc() 接受不定数量的参数,这些参数的类型全部是 int,所以它可以用如下方式调用: ```go myfunc2([]int{1, 3, 7, 13}) ``` 大家会发现,我们不得不加上[]int{}来构造一个数组切片实例,但是有了...type这个语法糖,我们就不用自己来处理了。 ## 任意类型的可变参数 之前的例子中将可变参数类型约束为 int,如果你希望传任意类型,可以指定类型为 interface{},下面是Go语言标准库中 fmt.Printf() 的函数原型: ```go func Printf(format string, args ...interface{}) { // ... } ``` 用 interface{} 传递任意类型数据是Go语言的惯例用法,使用 interface{} 仍然是类型安全的,这和 C/C++ 不太一样,下面通过示例来了解一下如何分配传入 interface{} 类型的数据。 ```go package main import "fmt" func MyPrintf(args ...interface{}) { for _, arg := range args { switch arg.(type) { case int: fmt.Println(arg, "is an int value.") case string: fmt.Println(arg, "is a string value.") case int64: fmt.Println(arg, "is an int64 value.") default: fmt.Println(arg, "is an unknown type.") } } } func main() { var v1 int = 1 var v2 int64 = 234 var v3 string = "hello" var v4 float32 = 1.234 MyPrintf(v1, v2, v3, v4) } ``` 该程序的输出结果为: ``` 1 is an int value. 234 is an int64 value. hello is a string value. 1.234 is an unknown type. ``` ## 遍历可变参数列表 获取每一个参数的值 可变参数列表的数量不固定,传入的参数是一个切片,如果需要获得每一个参数的具体值时,可以对可变参数变量进行遍历,参见下面代码: ```go package main import ( "bytes" "fmt" ) // 定义一个函数, 参数数量为0~n, 类型约束为字符串 func joinStrings(slist ...string) string { // 定义一个字节缓冲, 快速地连接字符串 var b bytes.Buffer // 遍历可变参数列表slist, 类型为[]string for _, s := range slist { // 将遍历出的字符串连续写入字节数组 b.WriteString(s) } // 将连接好的字节数组转换为字符串并输出 return b.String() } func main() { // 输入3个字符串, 将它们连成一个字符串 fmt.Println(joinStrings("pig ", "and", " rat")) fmt.Println(joinStrings("hammer", " mom", " and", " hawk")) } ``` 代码输出如下: ``` pig and rat hammer mom and hawk ``` 代码说明如下: 第 8 行,定义了一个可变参数的函数,slist 的类型为 []string,每一个参数的类型都是 string,也就是说,该函数只接受字符串类型作为参数。 第 11 行,bytes.Buffer 在这个例子中的作用类似于 StringBuilder,可以高效地进行字符串连接操作。 第 13 行,遍历 slist 可变参数,s 为每个参数的值,类型为 string。 第 15 行,将每一个传入参数放到 bytes.Buffer 中。 第 19 行,将 bytes.Buffer 中的数据转换为字符串作为函数返回值返回。 第 24 行,输入 3 个字符串,使用 joinStrings() 函数将参数连接为字符串输出。 第 25 行,输入 4 个字符串,连接后输出。 如果要获取可变参数的数量,可以使用 len() 函数对可变参数变量对应的切片进行求长度操作,以获得可变参数数量。 获得可变参数类型——获得每一个参数的类型 当可变参数为 interface{} 类型时,可以传入任何类型的值,此时,如果需要获得变量的类型,可以通过 switch 获得变量的类型,下面的代码演示将一系列不同类型的值传入 printTypeValue() 函数,该函数将分别为不同的参数打印它们的值和类型的详细描述。 打印类型及值: ```go package main import ( "bytes" "fmt" ) func printTypeValue(slist ...interface{}) string { // 字节缓冲作为快速字符串连接 var b bytes.Buffer // 遍历参数 for _, s := range slist { // 将interface{}类型格式化为字符串 str := fmt.Sprintf("%v", s) // 类型的字符串描述 var typeString string // 对s进行类型断言 switch s.(type) { case bool: // 当s为布尔类型时 typeString = "bool" case string: // 当s为字符串类型时 typeString = "string" case int: // 当s为整型类型时 typeString = "int" } // 写字符串前缀 b.WriteString("value: ") // 写入值 b.WriteString(str) // 写类型前缀 b.WriteString(" type: ") // 写类型字符串 b.WriteString(typeString) // 写入换行符 b.WriteString("\n") } return b.String() } func main() { // 将不同类型的变量通过printTypeValue()打印出来 fmt.Println(printTypeValue(100, "str", true)) } ``` 代码输出如下: ``` value: 100 type: int value: str type: string value: true type: bool ``` 代码说明如下: 第 8 行,printTypeValue() 输入不同类型的值并输出类型和值描述。 第 11 行,bytes.Buffer 字节缓冲作为快速字符串连接。 第 14 行,遍历 slist 的每一个元素,类型为 interface{}。 第 17 行,使用 fmt.Sprintf 配合%v动词,可以将 interface{} 格式的任意值转为字符串。 第 20 行,声明一个字符串,作为变量的类型名。 第 23 行,switch s.(type) 可以对 interface{} 类型进行类型断言,也就是判断变量的实际类型。 第 24~29 行为 s 变量可能的类型,将每种类型的对应类型字符串赋值到 typeString 中。 第 33~42 行为写输出格式的过程。 在多个可变参数函数中传递参数 可变参数变量是一个包含所有参数的切片,如果要将这个含有可变参数的变量传递给下一个可变参数函数,可以在传递时给可变参数变量后面添加...,这样就可以将切片中的元素进行传递,而不是传递可变参数变量本身。 下面的例子模拟 print() 函数及实际调用的 rawPrint() 函数,两个函数都拥有可变参数,需要将参数从 print 传递到 rawPrint 中。 可变参数传递: ```go package main import "fmt" // 实际打印的函数 func rawPrint(rawList ...interface{}) { // 遍历可变参数切片 for _, a := range rawList { // 打印参数 fmt.Println(a) } } // 打印函数封装 func print(slist ...interface{}) { // 将slist可变参数切片完整传递给下一个函数 rawPrint(slist...) } func main() { print(1, 2, 3) } ``` 代码输出如下: ``` 1 2 3 ``` 对代码的说明: 第 9~13 行,遍历 rawPrint() 的参数列表 rawList 并打印。 第 20 行,将变量在 print 的可变参数列表中添加...后传递给 rawPrint()。 第 25 行,传入 1、2、3 这 3 个整型值并进行打印。 如果尝试将第 20 行修改为: ```go rawPrint("fmt", slist) ``` 再次执行代码,将输出: ``` [1 2 3] ``` 此时,slist(类型为 []interface{})将被作为一个整体传入 rawPrint(),rawPrint() 函数中遍历的变量也就是 slist 的切片值。 可变参数使用...进行传递与切片间使用 append 连接是同一个特性。
Nathan
July 7, 2022, 1:43 p.m.
转发文档
Collection documents
Last
Next
手机扫码
Copy link
手机扫一扫转发分享
Copy link
Markdown文件
PDF文件
Docx文件
share
link
type
password
Update password