Golang笔记
Golang相关配置
golang 配置goproxy可选的地址
IDEA/Goland使用WSL作为默认Terminal
GoLand 2022.1-X专业版激活
Win下用WSL作为Goland终端交叉编译
MacOS下在Goland的Terminal中使用‘ll’命令无效
Golang LeeCode练习题
一 Golang数组问题
28. [简单] 寻找数组的中心下标
27. [简单] 数组的度
26. [简单] 最长连续递增序列
25. [简单] 非递减数列
24. [简单] 图片平滑器
23. [简单] 子数组最大平均数 I
22. [简单] 重塑矩阵
21. [简单] 数组拆分 I
20. [简单] 最大连续1的个数
19. [简单] 找到所有数组中消失的数字
18. [简单] 移动零
17. [简单] 丢失的数字
16. [简单] 汇总区间
15. [简单] 存在重复元素 II
14. [简单] 存在重复元素
13. [简单] 多数元素
12. [简单] 两数之和 II
11. [简单] 买卖股票的最佳时机 II
10. [简单] 买卖股票的最佳时机
09. [简单] 杨辉三角 II
08. [简单] 杨辉三角
07. [简单] 合并两个有序数组
06. [简单] 加一
05. [简单] 最大子序和
04. [简单] 搜索插入位置
03. [简单] 移除元素
02. [简单] 删除有序数组中的重复项
01. [简单] 两数之和
29. [简单] 至少是其他数字两倍的最大数
30. [简单] 托普利茨矩阵
31. [简单] 较大分组的位置
32. [简单] 转置矩阵
33. [简单] 公平的糖果棒交换
34. [简单] 单调数列
35. [简单] 按奇偶排序数组
36. [简单] 卡牌分组
37. [中等] 盛最多水的容器
38. [中等] 三数之和
39. [中等] 最接近的三数之和
40. [中等] 四数之和
41. [中等] 下一个排列
42. [中等] 搜索旋转排序数组
43. [中等] 在排序数组中查找元素的第一个和最后一个位置
44. [中等] 组合总和
45. [中等] 旋转图像
Golang完整学习记录
第一章 Go语言简介
20220519@基础环境
20220518@概述
第二章 Go语言基本语法
20220520@基础语法
20220521@正弦函数
20220523@数据类型转换
20220523@指针概念
20220524@堆栈和逃逸分析
20220526@(模拟)枚举
20220528@类型别名
20220528@注释的使用
20220528@关键字与标识符
20220528@运算符的优先级
20220528@数据类型的转换
第三章 Go语言容器
20220531@容器概念
20220531@数组详解
20220531@多维数组
20220605@切片详解
20220606@append的常见操作
20220606@切片元素修改
20220609@多维切片简述
20220609@map映射
20220612@并发(sync)Map
20220614@list(列表)
20220614@nil值/空值/零值
20220615@new和make
第四章 Go语言控制流程
20220615@if分支结构
20220615@for循环
20220615@range遍历
20220615@switch
20220616@goto标签
20220616@break和continue
20220616@聊天机器人
20220620@词频统计
20220622@缩进排序
20220622@二分查找算法
20220622@冒泡排序
20220623@分布式id生成器
第五章 Go语言函数
20220623@函数声明
20220623@函数参数传递效果
20220627@字符串的链式处理
20220630@匿名函数
20220704@函数类型接口
20220704@闭包(Closure)
20220706@可变参数
20220706@defer延迟语句
20220709@递归函数
20220713@处理运行错误
20220714@宕机(panic)
20220714@宕机恢复(recover)
20220715@计算函数耗时
20220718@内存缓存提升性能
20220718@哈希函数
20220720@Test功能测试
第六章 Go语言结构体
20220726@结构体定义
20220726@为结构体分配内存
20220730@实例化结构体
20220803@初始化结构体成员变量
20220810@构造函数
20220816@方法和接收器
20220816@为基本类型添加方法
20220816@使用事件系统实现事件响应和处理
20220817@类型内嵌和结构体内嵌
20220817@结构体内嵌模拟类的继承
20220817@初始化内嵌结构体
20220818@内嵌结构体成员名字冲突
20220823@使用匿名结构体解析JSON数据
20220827@垃圾回收和SetFinalizer
20220828@结构体数据保存为JSON格式
20220901@链表操作
20220908@数据I/O对象及操作
第七章 Go语言接口
20220911@接口定义
20220915@实现接口的条件
20220918@类型与接口的关系
20220918@接口的nil判断
20020918@类型断言简述
20220929@多输出实现日志系统
20221009@排序(by sort.Interface)
20221106@接口的嵌套组合
20221107@接口和类型之间的转换
20221109@空接口类型(interface{})
20221107@空接口实现任意值的字典保存
20221112@switch类型分支
20221201@Error接口返回错误信息
20221229@表达式求值器
20221229@实现Web服务器
20221229@部署Go程序到Linux
20221229@音乐播放器
20221230@有限状态机(FSM)
20221230@二叉树数据结构的应用
第八章 Go语言包概念
20230206@包的基本概念
20230212@封装简介及实现细节
20220212@GOPATH详解
20230212@常用内置包简介
20230212@自定义包
20230212@package(创建包)
20230212@import导入包
20230213@工厂模式自动注册
20230213@单例模式
20230214@sync包与锁
20230215@big包实现整数的高精度计算
20230215@使用图像包制作GIF动画
20230216@正则regexp包
20230218@time包:时间和日期
20230219@go mod包依赖管理工具
20230219@os包用法简述
20230219@flag包:命令行参数解析
20230219@生成二维码
20230219@Context(上下文)
20230220@示例:客户信息管理系统
20230221@发送电子邮件
20230222@Pingo插件化开发
20230221@定时器实现原理及作用
第九章 Go语言并发
20230224@并发简述(并发的优势)
20230224@goroutine(轻量级线程)
202300226@并发通信channe简介
20230226@竞争状态简述
20230227@GOMAXPROCS(并发运行性能)
20230227@并发和并行的区别
20230227@goroutine和coroutine的区别
20230227@通道(channel)—goroutine之间通信的管道
20230227@并发打印(借助通道实现)
20230227@单向通道——通道中的单行道
20230301@无缓冲的通道
20230301@带缓冲的通道
20230302@channel超时机制
20230302@通道的多路复用
20230302@RPC(模拟远程过程调用)
20230304@使用通道响应计时器的事件
20230306@关闭通道后继续使用通道
20230306@多核并行化
20230306@Telnet回音服务器-TCP服务器的基本结构
20230307@竞态检测——检测代码在并发环境下可能出现的问题
20230310@互斥锁(sync.Mutex)和读写互斥锁(sync.RWMutex)
20230310@等待组(sync.WaitGroup)
20230310@死锁、活锁和饥饿概述
20230311@封装qsort快速排序函数
20230311@CSP:并发通信顺序进程简述
20230312@聊天服务器
20230313@如何更加高效的使用并发
20230313@使用select切换协程
20230313@加密通信
第十章 Go语言反射
20230317@反射(reflection)简述
20230318@反射规则浅析
20230319@反射的性能和灵活性测试
20230322@通过反射获取类型信息(reflect.TypeOf()和reflect.Type)
20230325@通过反射获取指针指向的元素类型(reflect.Elem())
20230325@通过反射获取结构体的成员类型
20230325@结构体标签(Struct Tag)
20230325@通过反射获取值信息(reflect.ValueOf()和reflect.Value)
20230326@通过反射访问结构体成员的值
20230326@判断反射值的空和有效性(IsNil()和IsValid())
20230327@通过反射修改变量的值
20230327@通过类型信息创建实例
20230327@通过反射调用函数
20230327@依赖注入(inject库)
第十一章 文件处理
20230327@自定义数据文件
20230328@JSON文件的读写操作
20230402@XML文件的读写操作
20230402@使用Gob传输数据
20230404@纯文本文件的读写操作
20230405@二进制文件的读写操作
20230405@自定义二进制文件的读写操作
20230405@zip归档文件的读写操作
20230405@tar归档文件的读写操作
20230408@使用buffer读写文件
20230409@实现Unix中du命令统计文件
20230410@从INI文件中读取配置
20240411@文件的读写追加和复制
202304111@文件锁操作
第十二章 Go语言编译与工具
20230411@go build命令使用
20230413@clean命令-清除编译文件
20230413@run命令-编译并运行
20230413@fmt命令-格式化代码文件
20230413@install命令-编译并安装
20230414@go get命令-获取代码编译并安装
20230414@go generate命令-在编译前自动生成某类代码
20230415@go test命令-单元和性能测试
20230415@go pprof-性能分析命令
20230415@Go语言与C/C++进行交互
20230415@Go语言内存管理简述
20230415@Go语言垃圾回收
20230415@Go语言实现RSA和AES加解密
Golang简单实战
Golang根据书籍ISBN爬取豆瓣评分和评论数
Go编写使用指定的CPU百分比消耗CPU资源
Golang的日常应用
使用 FFmpeg 进行实时码率检测
WSL的远程开发应用
WSL2设置静态IP
在WSL2中启动SSH
使用CentOS7作为Goland终端的修改项
Golang学习路线
Go开发者成长路线图
本文档使用 MrDoc 发布
-
+
home page
20230219@Context(上下文)
Context 在 Go1.7 之后就加入到了Go语言标准库中,准确说它是 Goroutine 的上下文,包含 Goroutine 的运行状态、环境、现场等信息。 随着 Context 包的引入,标准库中很多接口因此加上了 Context 参数,例如 database/sql 包,Context 几乎成为了并发控制和超时控制的标准做法。 # 什么是 Context Context 也叫作“上下文”,是一个比较抽象的概念,一般理解为程序单元的一个运行状态、现场、快照。其中上下是指存在上下层的传递,上会把内容传递给下,程序单元则指的是 Goroutine。 每个 Goroutine 在执行之前,都要先知道程序当前的执行状态,通常将这些执行状态封装在一个 Context 变量中,传递给要执行的 Goroutine 中。 在网络编程下,当接收到一个网络请求 Request,在处理 Request 时,我们可能需要开启不同的 Goroutine 来获取数据与逻辑处理,即一个请求 Request,会在多个 Goroutine 中处理。而这些 Goroutine 可能需要共享 Request 的一些信息,同时当 Request 被取消或者超时的时候,所有从这个 Request 创建的所有 Goroutine 也应该被结束。 # Context 接口 Context 包的核心就是 Context 接口,其定义如下: ```go type Context interface { Deadline() (deadline time.Time, ok bool) Done() <-chan struct{} Err() error Value(key interface{}) interface{} } ``` 其中: 1. Deadline 方法需要返回当前 Context 被取消的时间,也就是完成工作的截止时间(deadline); 2. Done 方法需要返回一个 Channel,这个 Channel 会在当前工作完成或者上下文被取消之后关闭,多次调用 Done 方法会返回同一个Channel; 3. Err 方法会返回当前 Context 结束的原因,它只会在 Done 返回的 Channel 被关闭时才会返回非空的值: 3\.1. 如果当前 Context 被取消就会返回 Canceled 错误; 3\.2. 如果当前 Context 超时就会返回 DeadlineExceeded 错误; 4. Value 方法会从 Context 中返回键对应的值,对于同一个上下文来说,多次调用 Value 并传入相同的 Key 会返回相同的结果,该方法仅用于传递跨 API 和进程间跟请求域的数据。 # Background()和TODO() Go语言内置两个函数:Background() 和 TODO(),这两个函数分别返回一个实现了 Context 接口的 background 和 todo。 - Background() 主要用于 main 函数、初始化以及测试代码中,作为 Context 这个树结构的最顶层的 Context,也就是根 Context。 - TODO(),它目前还不知道具体的使用场景,在不知道该使用什么 Context 的时候,可以使用这个。 background 和 todo 本质上都是 emptyCtx 结构体类型,是一个不可取消,没有设置截止时间,没有携带任何值的 Context。 # With 系列函数 此外,Context 包中还定义了四个 With 系列函数。 ## WithCancel WithCancel 的函数签名如下: ```go func WithCancel(parent Context) (ctx Context, cancel CancelFunc) ``` WithCancel 返回带有新 Done 通道的父节点的副本,当调用返回的 cancel 函数或当关闭父上下文的 Done 通道时,将关闭返回上下文的 Done 通道,无论先发生什么情况。 取消此上下文将释放与其关联的资源,因此代码应该在此上下文中运行的操作完成后立即调用 cancel,示例代码如下: ```go package main import ( "context" "fmt" ) func main() { gen := func(ctx context.Context) <-chan int { dst := make(chan int) n := 1 go func() { for { select { case <-ctx.Done(): return // return结束该goroutine,防止泄露 case dst <- n: n++ } } }() return dst } ctx, cancel := context.WithCancel(context.Background()) defer cancel() // 当我们取完需要的整数后调用cancel for n := range gen(ctx) { fmt.Println(n) if n == 5 { break } } } ``` 上面的代码中,gen 函数在单独的 Goroutine 中生成整数并将它们发送到返回的通道,gen 的调用者在使用生成的整数之后需要取消上下文,以免 gen 启动的内部 Goroutine 发生泄漏。 运行结果如下: ``` go run main.go 1 2 3 4 5 ``` ## WithDeadline WithDeadline 的函数签名如下: ``` func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc) ``` WithDeadline 函数会返回父上下文的副本,并将 deadline 调整为不迟于 d。如果父上下文的 deadline 已经早于 d,则 WithDeadline(parent, d) 在语义上等同于父上下文。当截止日过期时,当调用返回的 cancel 函数时,或者当父上下文的 Done 通道关闭时,返回上下文的 Done 通道将被关闭,以最先发生的情况为准。 取消此上下文将释放与其关联的资源,因此代码应该在此上下文中运行的操作完成后立即调用 cancel,示例代码如下: ```go package main import ( "context" "fmt" "time" ) func main() { d := time.Now().Add(50 * time.Millisecond) ctx, cancel := context.WithDeadline(context.Background(), d) // 尽管ctx会过期,但在任何情况下调用它的cancel函数都是很好的实践。 // 如果不这样做,可能会使上下文及其父类存活的时间超过必要的时间。 defer cancel() select { case <-time.After(1 * time.Second): fmt.Println("overslept") case <-ctx.Done(): fmt.Println(ctx.Err()) } } ``` 运行结果如下: ``` go run main.go context deadline exceeded ``` 上面的代码中,定义了一个 50 毫秒之后过期的 deadline,然后我们调用 context.WithDeadline(context.Background(), d) 得到一个上下文(ctx)和一个取消函数(cancel),然后使用一个 select 让主程序陷入等待,等待 1 秒后打印 overslept 退出或者等待 ctx 过期后退出。因为 ctx 50 秒后就过期,所以 ctx.Done() 会先接收到值,然后打印 ctx.Err() 取消原因。 ## WithTimeout WithTimeout 的函数签名如下: ```go func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc) ``` WithTimeout 函数返回 `WithDeadline(parent, time.Now().Add(timeout))` 取消此上下文将释放与其相关的资源,因此代码应该在此上下文中运行的操作完成后立即调用 cancel,示例代码如下: ```go package main import ( "context" "fmt" "time" ) func main() { // 传递带有超时的上下文 // 告诉阻塞函数在超时结束后应该放弃其工作。 ctx, cancel := context.WithTimeout(context.Background(), 50*time.Millisecond) defer cancel() select { case <-time.After(1 * time.Second): fmt.Println("overslept") case <-ctx.Done(): fmt.Println(ctx.Err()) // 终端输出"context deadline exceeded" } } ``` 运行结果如下: ```go go run main.go context deadline exceeded ``` ## WithValue WithValue 函数能够将请求作用域的数据与 Context 对象建立关系。函数声明如下: ```go func WithValue(parent Context, key, val interface{}) Context ``` WithValue 函数接收 context 并返回派生的 context,其中值 val 与 key 关联,并通过 context 树与 context 一起传递。这意味着一旦获得带有值的 context,从中派生的任何 context 都会获得此值。不建议使用 context 值传递关键参数,函数应接收签名中的那些值,使其显式化。 所提供的键必须是可比较的,并且不应该是 string 类型或任何其他内置类型,以避免使用上下文在包之间发生冲突。WithValue 的用户应该为键定义自己的类型,为了避免在分配给接口{ } 时进行分配,上下文键通常具有具体类型 struct{}。或者,导出的上下文关键变量的静态类型应该是指针或接口。 ```go package main import ( "context" "fmt" ) func main() { type favContextKey string // 定义一个key类型 // f:一个从上下文中根据key取value的函数 f := func(ctx context.Context, k favContextKey) { if v := ctx.Value(k); v != nil { fmt.Println("found value:", v) return } fmt.Println("key not found:", k) } k := favContextKey("language") // 创建一个携带key为k,value为"Go"的上下文 ctx := context.WithValue(context.Background(), k, "Go") f(ctx, k) f(ctx, favContextKey("color")) } ``` 运行结果如下: ``` go run main.go found value: Go key not found: color ``` > 使用 Context 的注意事项: - 不要把 Context 放在结构体中,要以参数的方式显示传递; - 以 Context 作为参数的函数方法,应该把 Context 作为第一个参数; - 给一个函数方法传递 Context 的时候,不要传递 nil,如果不知道传递什么,就使用 context.TODO; - Context 的 Value 相关方法应该传递请求域的必要数据,不应该用于传递可选参数; - Context 是线程安全的,可以放心的在多个 Goroutine 中传递。 # 总结 Go语言中的 Context 的主要作用还是在多个 Goroutine 或者模块之间同步取消信号或者截止日期,用于减少对资源的消耗和长时间占用,避免资源浪费,虽然传值也是它的功能之一,但是这个功能我们还是很少用到。 在真正使用传值的功能时我们也应该非常谨慎,不能将请求的所有参数都使用 Context 进行传递,这是一种非常差的设计,比较常见的使用场景是传递请求对应用户的认证令牌以及用于进行分布式追踪的请求 ID。
Nathan
Feb. 19, 2023, 5:41 p.m.
转发文档
Collection documents
Last
Next
手机扫码
Copy link
手机扫一扫转发分享
Copy link
Markdown文件
PDF文件
Docx文件
share
link
type
password
Update password