Golang笔记
Golang相关配置
golang 配置goproxy可选的地址
IDEA/Goland使用WSL作为默认Terminal
GoLand 2022.1-X专业版激活
Win下用WSL作为Goland终端交叉编译
MacOS下在Goland的Terminal中使用‘ll’命令无效
GoLand 2024.1.X专业版激活
Golang LeeCode练习题
一 Golang数组问题
28. [简单] 寻找数组的中心下标
27. [简单] 数组的度
26. [简单] 最长连续递增序列
25. [简单] 非递减数列
24. [简单] 图片平滑器
23. [简单] 子数组最大平均数 I
22. [简单] 重塑矩阵
21. [简单] 数组拆分 I
20. [简单] 最大连续1的个数
19. [简单] 找到所有数组中消失的数字
18. [简单] 移动零
17. [简单] 丢失的数字
16. [简单] 汇总区间
15. [简单] 存在重复元素 II
14. [简单] 存在重复元素
13. [简单] 多数元素
12. [简单] 两数之和 II
11. [简单] 买卖股票的最佳时机 II
10. [简单] 买卖股票的最佳时机
09. [简单] 杨辉三角 II
08. [简单] 杨辉三角
07. [简单] 合并两个有序数组
06. [简单] 加一
05. [简单] 最大子序和
04. [简单] 搜索插入位置
03. [简单] 移除元素
02. [简单] 删除有序数组中的重复项
01. [简单] 两数之和
29. [简单] 至少是其他数字两倍的最大数
30. [简单] 托普利茨矩阵
31. [简单] 较大分组的位置
32. [简单] 转置矩阵
33. [简单] 公平的糖果棒交换
34. [简单] 单调数列
35. [简单] 按奇偶排序数组
36. [简单] 卡牌分组
37. [中等] 盛最多水的容器
38. [中等] 三数之和
39. [中等] 最接近的三数之和
40. [中等] 四数之和
41. [中等] 下一个排列
42. [中等] 搜索旋转排序数组
43. [中等] 在排序数组中查找元素的第一个和最后一个位置
44. [中等] 组合总和
45. [中等] 旋转图像
Golang完整学习记录
第一章 Go语言简介
20220519@基础环境
20220518@概述
第二章 Go语言基本语法
20220520@基础语法
20220521@正弦函数
20220523@数据类型转换
20220523@指针概念
20220524@堆栈和逃逸分析
20220526@(模拟)枚举
20220528@类型别名
20220528@注释的使用
20220528@关键字与标识符
20220528@运算符的优先级
20220528@数据类型的转换
第三章 Go语言容器
20220531@容器概念
20220531@数组详解
20220531@多维数组
20220605@切片详解
20220606@append的常见操作
20220606@切片元素修改
20220609@多维切片简述
20220609@map映射
20220612@并发(sync)Map
20220614@list(列表)
20220614@nil值/空值/零值
20220615@new和make
第四章 Go语言控制流程
20220615@if分支结构
20220615@for循环
20220615@range遍历
20220615@switch
20220616@goto标签
20220616@break和continue
20220616@聊天机器人
20220620@词频统计
20220622@缩进排序
20220622@二分查找算法
20220622@冒泡排序
20220623@分布式id生成器
第五章 Go语言函数
20220623@函数声明
20220623@函数参数传递效果
20220627@字符串的链式处理
20220630@匿名函数
20220704@函数类型接口
20220704@闭包(Closure)
20220706@可变参数
20220706@defer延迟语句
20220709@递归函数
20220713@处理运行错误
20220714@宕机(panic)
20220714@宕机恢复(recover)
20220715@计算函数耗时
20220718@内存缓存提升性能
20220718@哈希函数
20220720@Test功能测试
第六章 Go语言结构体
20220726@结构体定义
20220726@为结构体分配内存
20220730@实例化结构体
20220803@初始化结构体成员变量
20220810@构造函数
20220816@方法和接收器
20220816@为基本类型添加方法
20220816@使用事件系统实现事件响应和处理
20220817@类型内嵌和结构体内嵌
20220817@结构体内嵌模拟类的继承
20220817@初始化内嵌结构体
20220818@内嵌结构体成员名字冲突
20220823@使用匿名结构体解析JSON数据
20220827@垃圾回收和SetFinalizer
20220828@结构体数据保存为JSON格式
20220901@链表操作
20220908@数据I/O对象及操作
第七章 Go语言接口
20220911@接口定义
20220915@实现接口的条件
20220918@类型与接口的关系
20220918@接口的nil判断
20020918@类型断言简述
20220929@多输出实现日志系统
20221009@排序(by sort.Interface)
20221106@接口的嵌套组合
20221107@接口和类型之间的转换
20221109@空接口类型(interface{})
20221107@空接口实现任意值的字典保存
20221112@switch类型分支
20221201@Error接口返回错误信息
20221229@表达式求值器
20221229@实现Web服务器
20221229@部署Go程序到Linux
20221229@音乐播放器
20221230@有限状态机(FSM)
20221230@二叉树数据结构的应用
第八章 Go语言包概念
20230206@包的基本概念
20230212@封装简介及实现细节
20220212@GOPATH详解
20230212@常用内置包简介
20230212@自定义包
20230212@package(创建包)
20230212@import导入包
20230213@工厂模式自动注册
20230213@单例模式
20230214@sync包与锁
20230215@big包实现整数的高精度计算
20230215@使用图像包制作GIF动画
20230216@正则regexp包
20230218@time包:时间和日期
20230219@go mod包依赖管理工具
20230219@os包用法简述
20230219@flag包:命令行参数解析
20230219@生成二维码
20230219@Context(上下文)
20230220@示例:客户信息管理系统
20230221@发送电子邮件
20230222@Pingo插件化开发
20230221@定时器实现原理及作用
第九章 Go语言并发
20230224@并发简述(并发的优势)
20230224@goroutine(轻量级线程)
202300226@并发通信channe简介
20230226@竞争状态简述
20230227@GOMAXPROCS(并发运行性能)
20230227@并发和并行的区别
20230227@goroutine和coroutine的区别
20230227@通道(channel)—goroutine之间通信的管道
20230227@并发打印(借助通道实现)
20230227@单向通道——通道中的单行道
20230301@无缓冲的通道
20230301@带缓冲的通道
20230302@channel超时机制
20230302@通道的多路复用
20230302@RPC(模拟远程过程调用)
20230304@使用通道响应计时器的事件
20230306@关闭通道后继续使用通道
20230306@多核并行化
20230306@Telnet回音服务器-TCP服务器的基本结构
20230307@竞态检测——检测代码在并发环境下可能出现的问题
20230310@互斥锁(sync.Mutex)和读写互斥锁(sync.RWMutex)
20230310@等待组(sync.WaitGroup)
20230310@死锁、活锁和饥饿概述
20230311@封装qsort快速排序函数
20230311@CSP:并发通信顺序进程简述
20230312@聊天服务器
20230313@如何更加高效的使用并发
20230313@使用select切换协程
20230313@加密通信
第十章 Go语言反射
20230317@反射(reflection)简述
20230318@反射规则浅析
20230319@反射的性能和灵活性测试
20230322@通过反射获取类型信息(reflect.TypeOf()和reflect.Type)
20230325@通过反射获取指针指向的元素类型(reflect.Elem())
20230325@通过反射获取结构体的成员类型
20230325@结构体标签(Struct Tag)
20230325@通过反射获取值信息(reflect.ValueOf()和reflect.Value)
20230326@通过反射访问结构体成员的值
20230326@判断反射值的空和有效性(IsNil()和IsValid())
20230327@通过反射修改变量的值
20230327@通过类型信息创建实例
20230327@通过反射调用函数
20230327@依赖注入(inject库)
第十一章 文件处理
20230327@自定义数据文件
20230328@JSON文件的读写操作
20230402@XML文件的读写操作
20230402@使用Gob传输数据
20230404@纯文本文件的读写操作
20230405@二进制文件的读写操作
20230405@自定义二进制文件的读写操作
20230405@zip归档文件的读写操作
20230405@tar归档文件的读写操作
20230408@使用buffer读写文件
20230409@实现Unix中du命令统计文件
20230410@从INI文件中读取配置
20240411@文件的读写追加和复制
202304111@文件锁操作
第十二章 Go语言编译与工具
20230411@go build命令使用
20230413@clean命令-清除编译文件
20230413@run命令-编译并运行
20230413@fmt命令-格式化代码文件
20230413@install命令-编译并安装
20230414@go get命令-获取代码编译并安装
20230414@go generate命令-在编译前自动生成某类代码
20230415@go test命令-单元和性能测试
20230415@go pprof-性能分析命令
20230415@Go语言与C/C++进行交互
20230415@Go语言内存管理简述
20230415@Go语言垃圾回收
20230415@Go语言实现RSA和AES加解密
Golang简单实战
Golang根据书籍ISBN爬取豆瓣评分和评论数
Go编写使用指定的CPU百分比消耗CPU资源
Golang的日常应用
使用 FFmpeg 进行实时码率检测
WSL的远程开发应用
WSL2设置静态IP
在WSL2中启动SSH
使用CentOS7作为Goland终端的修改项
Golang学习路线
Go开发者成长路线图
本文档使用 MrDoc 发布
-
+
home page
20220606@切片元素修改
Go语言的内建函数 append() 可以为切片动态添加元素,代码如下所示: ```go var a []int a = append(a, 1) // 追加1个元素 a = append(a, 1, 2, 3) // 追加多个元素, 手写解包方式 a = append(a, []int{1,2,3}...) // 追加一个切片, 切片需要解包 ``` 不过需要注意的是,在使用 append() 函数为切片动态添加元素时,如果空间不足以容纳足够多的元素,切片就会进行“扩容”,此时新切片的长度会发生改变。 切片在扩容时,容量的扩展规律是按容量的 2 倍数进行扩充,例如 1、2、4、8、16……,代码如下: ```go var numbers []int for i := 0; i < 10; i++ { numbers = append(numbers, i) fmt.Printf("len: %d cap: %d pointer: %p\n", len(numbers), cap(numbers), numbers) } ``` ## append()为切片添加元素 ```go package main import "fmt" func main() { //声明一个切片 num := make([]int,5,10) //打印添加前的切片 fmt.Println("动态添加元素前:",num) //为切片动态添加元素(手动解包方式) num = append(num,1,2) //为切片动态添加元素(切片解包方式) aped := []int{3,4} num = append(num,aped...) //打印添加后的切片 fmt.Println("动态添加元素后:",num) //切片容量的自动扩容 //打印扩容前 fmt.Printf("扩容前num切片的长度: %v 容量:%v\n",len(num),cap(num)) //进行自动扩容 for i:=0;i<15;i++ { num = append(num,i) //扩容规则 // 容量的扩展规律是按容量的 2 倍数进行扩充 // 如下示例说明:切片长度 len 并不等于切片的容量 cap,随着容量的变化,内存会跟着变化 //在内存中,容量扩充变化需要先申请内存,然后再将旧内存中的所有迁移到新的内存地址中 fmt.Printf("追加元素:%d, 目前长度:%d, 容量:%d, 内存地址:%p\n",i,len(num),cap(num),num) } //在切片元素头部添加元素 //头部添加元素是需要将所有已存在的元素进行向后复制移动,消耗性能 fmt.Println("添加头部元素前:",num) //添加头部元素 num = append([]int{9,9,9},num...) fmt.Println("添加头部元素后:",num) //在指定索引位置插入元素 //在第2个索引后插入元素5,5 num = append(num[:2],append([]int{5},num...)...) fmt.Println("添加元素到指定位置后:",num) } ``` ## 切片复制(切片拷贝) Go语言的内置函数 copy() 可以将一个数组切片复制到另一个数组切片中,如果加入的两个数组切片不一样大,就会按照其中较小的那个数组切片的元素个数进行复制。 copy() 函数的使用格式如下: ```go copy( destSlice, srcSlice []T) int ``` 其中 srcSlice 为数据来源切片,destSlice 为复制的目标(也就是将 srcSlice 复制到 destSlice),目标切片必须分配过空间且足够承载复制的元素个数,并且来源和目标的类型必须一致,copy() 函数的返回值表示实际发生复制的元素个数。 下面的代码展示了使用 copy() 函数将一个切片复制到另一个切片的过程: ```go slice1 := []int{1, 2, 3, 4, 5} slice2 := []int{5, 4, 3} copy(slice2, slice1) // 只会复制slice1的前3个元素到slice2中 copy(slice1, slice2) // 只会复制slice2的3个元素到slice1的前3个位置 ``` 虽然通过循环复制切片元素更直接,不过内置的 copy() 函数使用起来更加方便,copy() 函数的第一个参数是要复制的目标 slice,第二个参数是源 slice,两个 slice 可以共享同一个底层数组,甚至有重叠也没有问题。 ```go package main import "fmt" // 定义切片常量 const eleCount = 1000 func main() { //声明一组切片 var s1 = []int{1,2,3,4,5} var s2 = []int{0,0,0} //将切片s1复制到s2 fmt.Println("before copy",s2) copy(s2,s1) fmt.Println("after copy",s2) //定义一个数组 srcData := make([]int,eleCount) //赋值 for i := 0; i < eleCount; i++ { srcData[i] = i } //引用切片 refData := srcData //复制切片 copyData := make([]int,eleCount) copy(copyData,srcData) //修改原始切片的元素内容 srcData[0] = 123 //分别打印引用切片和复制切片对应的值 fmt.Println("引用:",refData[0]) fmt.Println("复制:",copyData[0]) /* 说明: 当切片为引用后,内存底层地址相同,同一内存地址内存放的数据发生变化后,新引用切片的数据也会发生变化 但当切片为复制后,源切片的修改不会影响到复制后的结果 */ } ``` ## 从切片中删除元素 Go语言并没有对删除切片元素提供专用的语法或者接口,需要使用切片本身的特性来删除元素,根据要删除元素的位置有三种情况,分别是从开头位置删除、从中间位置删除和从尾部删除,其中删除切片尾部的元素速度最快。 从开头位置删除 删除开头的元素可以直接移动数据指针: ```go a = []int{1, 2, 3} a = a[1:] // 删除开头1个元素 a = a[N:] // 删除开头N个元素 ``` 也可以不移动数据指针,但是将后面的数据向开头移动,可以用 append 原地完成(所谓原地完成是指在原有的切片数据对应的内存区间内完成,不会导致内存空间结构的变化): ```go a = []int{1, 2, 3} a = append(a[:0], a[1:]...) // 删除开头1个元素 a = append(a[:0], a[N:]...) // 删除开头N个元素 ```go 还可以用 copy() 函数来删除开头的元素: ```go a = []int{1, 2, 3} a = a[:copy(a, a[1:])] // 删除开头1个元素 a = a[:copy(a, a[N:])] // 删除开头N个元素 ``` 从中间位置删除 对于删除中间的元素,需要对剩余的元素进行一次整体挪动,同样可以用 append 或 copy 原地完成: ```go a = []int{1, 2, 3, ...} a = append(a[:i], a[i+1:]...) // 删除中间1个元素 a = append(a[:i], a[i+N:]...) // 删除中间N个元素 a = a[:i+copy(a[i:], a[i+1:])] // 删除中间1个元素 a = a[:i+copy(a[i:], a[i+N:])] // 删除中间N个元素 ``` 从尾部删除 ```go a = []int{1, 2, 3} a = a[:len(a)-1] // 删除尾部1个元素 a = a[:len(a)-N] // 删除尾部N个元素 ``` 删除开头的元素和删除尾部的元素都可以认为是删除中间元素操作的特殊情况 代码的删除过程可以使用下图来描述。 ![](/media/202206/2022-06-08_165749_955301.png) ## 循环迭代切片 通过前面的学习我们了解到切片其实就是多个相同类型元素的连续集合,既然切片是一个集合,那么我们就可以迭代其中的元素,Go语言有个特殊的关键字 range,它可以配合关键字 for 来迭代切片里的每一个元素,如下所示: ```go // 创建一个整型切片,并赋值 slice := []int{10, 20, 30, 40} // 迭代每一个元素,并显示其值 for index, value := range slice { fmt.Printf("Index: %d Value: %d\n", index, value) } ``` 第 4 行中的 index 和 value 分别用来接收 range 关键字返回的切片中每个元素的索引和值,这里的 index 和 value 不是固定的,读者也可以定义成其它的名字。 关于 for 的详细使用我们将在下一章《Go语言流程控制》中为大家详细介绍。 上面代码的输出结果为: ``` Index: 0 Value: 10 Index: 1 Value: 20 Index: 2 Value: 30 Index: 3 Value: 40 ``` 当迭代切片时,关键字 range 会返回两个值,第一个值是当前迭代到的索引位置,第二个值是该位置对应元素值的一份副本,如下图所示。 使用 range 迭代切片会创建每个元素的副本 图:使用 range 迭代切片会创建每个元素的副本 需要强调的是,range 返回的是每个元素的副本,而不是直接返回对该元素的引用,如下所示。 【示例 1】range 提供了每个元素的副本 ```go // 创建一个整型切片,并赋值 slice := []int{10, 20, 30, 40} // 迭代每个元素,并显示值和地址 for index, value := range slice { fmt.Printf("Value: %d Value-Addr: %X ElemAddr: %X\n", value, &value, &slice[index]) } ``` 输出结果为: ``` Value: 10 Value-Addr: 10500168 ElemAddr: 1052E100 Value: 20 Value-Addr: 10500168 ElemAddr: 1052E104 Value: 30 Value-Addr: 10500168 ElemAddr: 1052E108 Value: 40 Value-Addr: 10500168 ElemAddr: 1052E10C ``` 因为迭代返回的变量是一个在迭代过程中根据切片依次赋值的新变量,所以 value 的地址总是相同的,要想获取每个元素的地址,需要使用切片变量和索引值(例如上面代码中的 &slice[index])。 如果不需要索引值,也可以使用下划线_来忽略这个值,代码如下所示。 【示例 2】使用空白标识符(下划线)来忽略索引值 ```go // 创建一个整型切片,并赋值 slice := []int{10, 20, 30, 40} // 迭代每个元素,并显示其值 for _, value := range slice { fmt.Printf("Value: %d\n", value) } ``` 输出结果为: ``` Value: 10 Value: 20 Value: 30 Value: 40 ``` 关键字 range 总是会从切片头部开始迭代。如果想对迭代做更多的控制,则可以使用传统的 for 循环,代码如下所示。 【示例 3】使用传统的 for 循环对切片进行迭代 ```go // 创建一个整型切片,并赋值 slice := []int{10, 20, 30, 40} // 从第三个元素开始迭代每个元素 for index := 2; index < len(slice); index++ { fmt.Printf("Index: %d Value: %d\n", index, slice[index]) } ``` 输出结果为: ``` Index: 2 Value: 30 Index: 3 Value: 40 ``` 在前面几节的学习中我们了解了两个特殊的内置函数 len() 和 cap(),可以用于处理数组、切片和通道,对于切片,函数 len() 可以返回切片的长度,函数 cap() 可以返回切片的容量,在上面的示例中,使用到了函数 len() 来控制循环迭代的次数。 学习结束地址:http://c.biancheng.net/view/29.html
Nathan
June 9, 2022, 1:26 p.m.
转发文档
Collection documents
Last
Next
手机扫码
Copy link
手机扫一扫转发分享
Copy link
Markdown文件
PDF文件
Docx文件
share
link
type
password
Update password