Golang笔记
Golang相关配置
golang 配置goproxy可选的地址
IDEA/Goland使用WSL作为默认Terminal
GoLand 2022.1-X专业版激活
Win下用WSL作为Goland终端交叉编译
MacOS下在Goland的Terminal中使用‘ll’命令无效
Golang LeeCode练习题
一 Golang数组问题
28. [简单] 寻找数组的中心下标
27. [简单] 数组的度
26. [简单] 最长连续递增序列
25. [简单] 非递减数列
24. [简单] 图片平滑器
23. [简单] 子数组最大平均数 I
22. [简单] 重塑矩阵
21. [简单] 数组拆分 I
20. [简单] 最大连续1的个数
19. [简单] 找到所有数组中消失的数字
18. [简单] 移动零
17. [简单] 丢失的数字
16. [简单] 汇总区间
15. [简单] 存在重复元素 II
14. [简单] 存在重复元素
13. [简单] 多数元素
12. [简单] 两数之和 II
11. [简单] 买卖股票的最佳时机 II
10. [简单] 买卖股票的最佳时机
09. [简单] 杨辉三角 II
08. [简单] 杨辉三角
07. [简单] 合并两个有序数组
06. [简单] 加一
05. [简单] 最大子序和
04. [简单] 搜索插入位置
03. [简单] 移除元素
02. [简单] 删除有序数组中的重复项
01. [简单] 两数之和
29. [简单] 至少是其他数字两倍的最大数
30. [简单] 托普利茨矩阵
31. [简单] 较大分组的位置
32. [简单] 转置矩阵
33. [简单] 公平的糖果棒交换
34. [简单] 单调数列
35. [简单] 按奇偶排序数组
36. [简单] 卡牌分组
37. [中等] 盛最多水的容器
38. [中等] 三数之和
39. [中等] 最接近的三数之和
40. [中等] 四数之和
41. [中等] 下一个排列
42. [中等] 搜索旋转排序数组
43. [中等] 在排序数组中查找元素的第一个和最后一个位置
44. [中等] 组合总和
45. [中等] 旋转图像
Golang完整学习记录
第一章 Go语言简介
20220519@基础环境
20220518@概述
第二章 Go语言基本语法
20220520@基础语法
20220521@正弦函数
20220523@数据类型转换
20220523@指针概念
20220524@堆栈和逃逸分析
20220526@(模拟)枚举
20220528@类型别名
20220528@注释的使用
20220528@关键字与标识符
20220528@运算符的优先级
20220528@数据类型的转换
第三章 Go语言容器
20220531@容器概念
20220531@数组详解
20220531@多维数组
20220605@切片详解
20220606@append的常见操作
20220606@切片元素修改
20220609@多维切片简述
20220609@map映射
20220612@并发(sync)Map
20220614@list(列表)
20220614@nil值/空值/零值
20220615@new和make
第四章 Go语言控制流程
20220615@if分支结构
20220615@for循环
20220615@range遍历
20220615@switch
20220616@goto标签
20220616@break和continue
20220616@聊天机器人
20220620@词频统计
20220622@缩进排序
20220622@二分查找算法
20220622@冒泡排序
20220623@分布式id生成器
第五章 Go语言函数
20220623@函数声明
20220623@函数参数传递效果
20220627@字符串的链式处理
20220630@匿名函数
20220704@函数类型接口
20220704@闭包(Closure)
20220706@可变参数
20220706@defer延迟语句
20220709@递归函数
20220713@处理运行错误
20220714@宕机(panic)
20220714@宕机恢复(recover)
20220715@计算函数耗时
20220718@内存缓存提升性能
20220718@哈希函数
20220720@Test功能测试
第六章 Go语言结构体
20220726@结构体定义
20220726@为结构体分配内存
20220730@实例化结构体
20220803@初始化结构体成员变量
20220810@构造函数
20220816@方法和接收器
20220816@为基本类型添加方法
20220816@使用事件系统实现事件响应和处理
20220817@类型内嵌和结构体内嵌
20220817@结构体内嵌模拟类的继承
20220817@初始化内嵌结构体
20220818@内嵌结构体成员名字冲突
20220823@使用匿名结构体解析JSON数据
20220827@垃圾回收和SetFinalizer
20220828@结构体数据保存为JSON格式
20220901@链表操作
20220908@数据I/O对象及操作
第七章 Go语言接口
20220911@接口定义
20220915@实现接口的条件
20220918@类型与接口的关系
20220918@接口的nil判断
20020918@类型断言简述
20220929@多输出实现日志系统
20221009@排序(by sort.Interface)
20221106@接口的嵌套组合
20221107@接口和类型之间的转换
20221109@空接口类型(interface{})
20221107@空接口实现任意值的字典保存
20221112@switch类型分支
20221201@Error接口返回错误信息
20221229@表达式求值器
20221229@实现Web服务器
20221229@部署Go程序到Linux
20221229@音乐播放器
20221230@有限状态机(FSM)
20221230@二叉树数据结构的应用
第八章 Go语言包概念
20230206@包的基本概念
20230212@封装简介及实现细节
20220212@GOPATH详解
20230212@常用内置包简介
20230212@自定义包
20230212@package(创建包)
20230212@import导入包
20230213@工厂模式自动注册
20230213@单例模式
20230214@sync包与锁
20230215@big包实现整数的高精度计算
20230215@使用图像包制作GIF动画
20230216@正则regexp包
20230218@time包:时间和日期
20230219@go mod包依赖管理工具
20230219@os包用法简述
20230219@flag包:命令行参数解析
20230219@生成二维码
20230219@Context(上下文)
20230220@示例:客户信息管理系统
20230221@发送电子邮件
20230222@Pingo插件化开发
20230221@定时器实现原理及作用
第九章 Go语言并发
20230224@并发简述(并发的优势)
20230224@goroutine(轻量级线程)
202300226@并发通信channe简介
20230226@竞争状态简述
20230227@GOMAXPROCS(并发运行性能)
20230227@并发和并行的区别
20230227@goroutine和coroutine的区别
20230227@通道(channel)—goroutine之间通信的管道
20230227@并发打印(借助通道实现)
20230227@单向通道——通道中的单行道
20230301@无缓冲的通道
20230301@带缓冲的通道
20230302@channel超时机制
20230302@通道的多路复用
20230302@RPC(模拟远程过程调用)
20230304@使用通道响应计时器的事件
20230306@关闭通道后继续使用通道
20230306@多核并行化
20230306@Telnet回音服务器-TCP服务器的基本结构
20230307@竞态检测——检测代码在并发环境下可能出现的问题
20230310@互斥锁(sync.Mutex)和读写互斥锁(sync.RWMutex)
20230310@等待组(sync.WaitGroup)
20230310@死锁、活锁和饥饿概述
20230311@封装qsort快速排序函数
20230311@CSP:并发通信顺序进程简述
20230312@聊天服务器
20230313@如何更加高效的使用并发
20230313@使用select切换协程
20230313@加密通信
第十章 Go语言反射
20230317@反射(reflection)简述
20230318@反射规则浅析
20230319@反射的性能和灵活性测试
20230322@通过反射获取类型信息(reflect.TypeOf()和reflect.Type)
20230325@通过反射获取指针指向的元素类型(reflect.Elem())
20230325@通过反射获取结构体的成员类型
20230325@结构体标签(Struct Tag)
20230325@通过反射获取值信息(reflect.ValueOf()和reflect.Value)
20230326@通过反射访问结构体成员的值
20230326@判断反射值的空和有效性(IsNil()和IsValid())
20230327@通过反射修改变量的值
20230327@通过类型信息创建实例
20230327@通过反射调用函数
20230327@依赖注入(inject库)
第十一章 文件处理
20230327@自定义数据文件
20230328@JSON文件的读写操作
20230402@XML文件的读写操作
20230402@使用Gob传输数据
20230404@纯文本文件的读写操作
20230405@二进制文件的读写操作
20230405@自定义二进制文件的读写操作
20230405@zip归档文件的读写操作
20230405@tar归档文件的读写操作
20230408@使用buffer读写文件
20230409@实现Unix中du命令统计文件
20230410@从INI文件中读取配置
20240411@文件的读写追加和复制
202304111@文件锁操作
第十二章 Go语言编译与工具
20230411@go build命令使用
20230413@clean命令-清除编译文件
20230413@run命令-编译并运行
20230413@fmt命令-格式化代码文件
20230413@install命令-编译并安装
20230414@go get命令-获取代码编译并安装
20230414@go generate命令-在编译前自动生成某类代码
20230415@go test命令-单元和性能测试
20230415@go pprof-性能分析命令
20230415@Go语言与C/C++进行交互
20230415@Go语言内存管理简述
20230415@Go语言垃圾回收
20230415@Go语言实现RSA和AES加解密
Golang简单实战
Golang根据书籍ISBN爬取豆瓣评分和评论数
Go编写使用指定的CPU百分比消耗CPU资源
Golang的日常应用
使用 FFmpeg 进行实时码率检测
WSL的远程开发应用
WSL2设置静态IP
在WSL2中启动SSH
使用CentOS7作为Goland终端的修改项
Golang学习路线
Go开发者成长路线图
本文档使用 MrDoc 发布
-
+
home page
20230221@定时器实现原理及作用
对于任何一个正在运行的应用,如何获取准确的绝对时间都非常重要,但是在一个分布式系统中我们很难保证各个节点上绝对时间的一致性,哪怕通过 NTP 这种标准的对时协议也只能把时间的误差控制在毫秒级,所以相对时间在一个分布式系统中显得更为重要,在接下来的讲解中我们将会介绍一下Go语言中的定时器以及它在并发编程中起到什么样的作用。 绝对时间一定不会是完全准确的,它对于一个运行中的分布式系统其实没有太多指导意义,但是由于相对时间的计算不依赖于外部的系统,所以它的计算可以做的比较准确,首先介绍一下Go语言中用于计算相对时间的定时器的实现原理。 # 结构 timer 就是Go语言定时器的内部表示,每一个 timer 其实都存储在堆中,tb 就是用于存储当前定时器的桶,而 i 是当前定时器在堆中的索引,我们可以通过这两个变量找到当前定时器在堆中的位置: ```go type timer struct { tb *timersBucket i int when int64 period int64 f func(interface{}, uintptr) arg interface{} seq uintptr } ``` when 表示当前定时器(Timer)被唤醒的时间,而 period 表示两次被唤醒的间隔,每当定时器被唤醒时都会调用 f(args, now) 函数并传入 args 和当前时间作为参数。 然而这里的 timer 作为一个私有结构体其实只是定时器的运行时表示,time 包对外暴露的定时器使用了如下所示的结构体: ```go type Timer struct { C <-chan Time r runtimeTimer } ``` Timer 定时器必须通过 NewTimer 或者 AfterFunc 函数进行创建,其中的 runtimeTimer 其实就是上面介绍的 timer 结构体,当定时器失效时,失效的时间就会被发送给当前定时器持有的 Channel C,订阅管道中消息的 Goroutine 就会收到当前定时器失效的时间。 在 time 包中,除了 timer 和 Timer 两个分别用于表示运行时定时器和对外暴露的 API 之外,timersBucket 这个用于存储定时器的结构体也非常重要,它会存储一个处理器上的全部定时器,不过如果当前机器的核数超过了 64 核,也就是机器上的处理器 P 的个数超过了 64 个,多个处理器上的定时器就可能存储在同一个桶中: ```go type timersBucket struct { lock mutex gp *g created bool sleeping bool rescheduling bool sleepUntil int64 waitnote note t []*timer } ``` 每一个 timersBucket 中的 t 就是用于存储定时器指针的切片,每一个运行的Go语言程序都会在内存中存储着 64 个桶,这些桶中都存储定时器的信息: ![](/media/202302/2023-02-22_134155_3485790.37255634405783433.png) 每一个桶持有的 timer 切片其实都是一个最小堆,这个最小堆会按照 timer 应该触发的时间对它们进行排序,最小堆最上面的定时器就是最近需要被唤醒的 timer,下面来介绍下定时器的创建和触发过程。 # 工作原理 既然我们已经介绍了定时器的数据结构,接下来我们就可以开始分析它的常见操作以及工作原理了,在这一节中我们将介绍定时器的创建、触发、time.Sleep 与定时器的关系以及计时器 Ticker 的实现原理。 ## 创建 time 包对外提供了两种创建定时器的方法,第一种方法就是 NewTimer 接口,这个接口会创建一个用于通知触发时间的 Channel、调用 startTimer 方法并返回一个创建指向 Timer 结构体的指针: ```go func NewTimer(d Duration) *Timer { c := make(chan Time, 1) t := &Timer{ C: c, r: runtimeTimer{ when: when(d), f: sendTime, arg: c, }, } startTimer(&t.r) return t } ``` 另一个用于创建 Timer 的方法 AfterFunc 其实也提供了非常相似的结构,与 NewTimer 方法不同的是该方法没有创建一个用于通知触发时间的 Channel,它只会在定时器到期时调用传入的方法: ```go func AfterFunc(d Duration, f func()) *Timer { t := &Timer{ r: runtimeTimer{ when: when(d), f: goFunc, arg: f, }, } startTimer(&t.r) return t } ``` startTimer 基本上就是创建定时器的入口了,所有定时器的创建和重启基本上都需要调用该函数: ```go func startTimer(t *timer) { addtimer(t) } func addtimer(t *timer) { tb := t.assignBucket() tb.addtimerLocked(t) } ``` 它会调用 addtimer 函数,这个函数总共做了两件事情,首先通过 assignBucket 方法为当前定时器选择一个 timersBucket 桶,我们会根据当前 Goroutine 所在处理器 P 的 id 选择一个合适的桶,随后调用 addtimerLocked 方法将当前定时器加入桶中: ```go func (tb *timersBucket) addtimerLocked(t *timer) bool { t.i = len(tb.t) tb.t = append(tb.t, t) if !siftupTimer(tb.t, t.i) { return false } if t.i == 0 { if tb.sleeping && tb.sleepUntil > t.when { tb.sleeping = false notewakeup(&tb.waitnote) } if tb.rescheduling { tb.rescheduling = false goready(tb.gp, 0) } if !tb.created { tb.created = true go timerproc(tb) } } return true } ``` addtimerLocked 会先将最新加入的定时器加到队列的末尾,随后调用 siftupTimer 将当前定时器与四叉树(或者四叉堆)中的父节点进行比较,保证父节点的到期时间一定小于子节点: ![](/media/202302/2023-02-22_134211_1343850.8536815687643425.png) 这个四叉树只能保证父节点的到期时间大于子节点,这对于我们来说其实也足够了,因为我们只关心即将被触发的计数器,如果当前定时器是第一个被加入四叉树的定时器,我们还会通过 go timerproc(tb) 启动一个 Goroutine 用于处理当前树中的定时器,这也是处理定时器的核心方法。 ## 触发 定时器的触发都是由 timerproc 中的一个双层 for 循环控制的,外层的 for 循环主要负责对当前 Goroutine 进行控制,它不仅会负责锁的获取和释放,还会在合适的时机触发当前 Goroutine 的休眠: ```go func timerproc(tb *timersBucket) { tb.gp = getg() for { tb.sleeping = false now := nanotime() delta := int64(-1) // inner loop if delta < 0 { tb.rescheduling = true goparkunlock(&tb.lock, waitReasonTimerGoroutineIdle, traceEvGoBlock, 1) continue } tb.sleeping = true tb.sleepUntil = now + delta noteclear(&tb.waitnote) notetsleepg(&tb.waitnote, delta) } } ``` 如果距离下一个定时器被唤醒的时间小于 0,当前的 timerproc 就会将 rescheduling 标记设置成 true 并立刻陷入休眠,这其实也意味着当前 timerproc 中不包含任何待处理的定时器,当我们再向该 timerBucket 加入定时器时就会重新唤醒 timerproc Goroutine。 在其他情况下,也就是下一次计数器的响应时间是 now + delta 时,timerproc 中的外层循环会通过 notesleepg 将当前 Goroutine 陷入休眠。 ```go func notetsleepg(n *note, ns int64) bool { gp := getg() if gp == gp.m.g0 { throw("notetsleepg on g0") } semacreate(gp.m) entersyscallblock() ok := notetsleep_internal(n, ns, nil, 0) exitsyscall() return ok } ``` 该函数会先获取当前的 Goroutine 并在当前的 CPU 上创建一个信号量,随后在 entersyscallblock 和 exitsyscall 之间执行系统调用让当前的 Goroutine 陷入休眠并在 ns 纳秒后返回。 内部循环的主要作用就是触发已经到期的定时器,在这个内部循环中,我们会按照以下的流程对当前桶中的定时器进行处理: - 如果桶中不包含任何定时器就会直接返回并陷入休眠等待定时器加入当前桶; - 如果四叉树最上面的定时器还没有到期会通过 notetsleepg 方法陷入休眠等待最近定时器的到期; - 如果四叉树最上面的定时器已经到期; - 当定时器的 period > 0 就会设置下一次会触发定时器的时间并将当前定时器向下移动到对应的位置; - 当定时器的 period <= 0 就会将当前定时器从四叉树中移除; - 在每次循环的最后都会从定时器中取出定时器中的函数、参数和序列号并调用函数触发该计数器; ```go for { if len(tb.t) == 0 { delta = -1 break } t := tb.t[0] delta = t.when - now if delta > 0 { break } ok := true if t.period > 0 { t.when += t.period * (1 + -delta/t.period) if !siftdownTimer(tb.t, 0) { ok = false } } else { last := len(tb.t) - 1 if last > 0 { tb.t[0] = tb.t[last] tb.t[0].i = 0 } tb.t[last] = nil tb.t = tb.t[:last] if last > 0 { if !siftdownTimer(tb.t, 0) { ok = false } } t.i = -1 // mark as removed } f := t.f arg := t.arg seq := t.seq f(arg, seq) } ``` 使用 NewTimer 创建的定时器,传入的函数时 sendTime,它会将当前时间发送到定时器持有的 Channel 中,而使用 AfterFunc 创建的定时器,在内层循环中调用的函数就会是调用方传入的函数了。 ## 休眠 如果你使用过一段时间的Go语言,一定在项目中使用过 time 包中的 Sleep 方法让当前的 Goroutine 陷入休眠以等待某些条件的完成或者触发一些定时任务,time.Sleep 就是通过如下所示的 timeSleep 方法完成的: ```go func timeSleep(ns int64) { if ns <= 0 { return } gp := getg() t := gp.timer if t == nil { t = new(timer) gp.timer = t } *t = timer{} t.when = nanotime() + ns t.f = goroutineReady t.arg = gp tb := t.assignBucket() lock(&tb.lock) if !tb.addtimerLocked(t) { unlock(&tb.lock) badTimer() } goparkunlock(&tb.lock, waitReasonSleep, traceEvGoSleep, 2) } ``` timeSleep 会创建一个新的 timer 结构体,在初始化的过程中我们会传入当前 Goroutine 应该被唤醒的时间以及唤醒时需要调用的函数 goroutineReady,随后会调用 goparkunlock 将当前 Goroutine 陷入休眠状态,当定时器到期时也会调用 goroutineReady 方法唤醒当前的 Goroutine: ```go func goroutineReady(arg interface{}, seq uintptr) { goready(arg.(*g), 0) } ``` time.Sleep 方法其实只是创建了一个会在到期时唤醒当前 Goroutine 的定时器并通过 goparkunlock 将当前的协程陷入休眠状态等待定时器触发的唤醒。 ## Ticker 除了只用于一次的定时器(Timer)之外,Go语言的 time 包中还提供了用于多次通知的 Ticker 计时器,计时器中包含了一个用于接受通知的 Channel 和一个定时器,这两个字段共同组成了用于连续多次触发事件的计时器: ```go type Ticker struct { C <-chan Time // The channel on which the ticks are delivered. r runtimeTimer } ``` 想要在Go语言中创建一个计时器只有两种方法,一种是使用 NewTicker 方法显示地创建 Ticker 计时器指针,另一种可以直接通过 Tick 方法获取一个会定期发送消息的 Channel: ```go func NewTicker(d Duration) *Ticker { if d <= 0 { panic(errors.New("non-positive interval for NewTicker")) } c := make(chan Time, 1) t := &Ticker{ C: c, r: runtimeTimer{ when: when(d), period: int64(d), f: sendTime, arg: c, }, } startTimer(&t.r) return t } func Tick(d Duration) <-chan Time { if d <= 0 { return nil } return NewTicker(d).C } ``` Tick 其实也只是对 NewTicker 的简单封装,从实现上我们就能看出来它其实就是调用了 NewTicker 获取了计时器并返回了计时器中 Channel,两个创建计时器的方法的实现都并不复杂而且费容易理解,所以在这里也就不详细展开介绍了。 需要注意的是每一个 NewTicker 方法开启的计时器都需要在不需要使用时调用 Stop 进行关闭,如果不显示调用 Stop 方法,创建的计时器就没有办法被垃圾回收,而通过 Tick 创建的计时器由于只对外提供了 Channel,所以是一定没有办法关闭的,我们一定要谨慎使用这一接口创建计时器。 # 性能分析 定时器在内部使用四叉树的方式进行实现和存储,当我们在生产环境中使用定时器进行毫秒级别的计时时,在高并发的场景下会有比较明显的性能问题,我们可以通过实验测试一下定时器在高并发时的性能,假设我们有以下的代码: ```go func runTimers(count int) { durationCh := make(chan time.Duration, count) wg := sync.WaitGroup{} wg.Add(count) for i := 0; i < count; i++ { go func() { startedAt := time.Now() time.AfterFunc(10*time.Millisecond, func() { defer wg.Done() durationCh <- time.Since(startedAt) }) }() } wg.Wait() close(durationCh) durations := []time.Duration{} totalDuration := 0 * time.Millisecond for duration := range durationCh { durations = append(durations, duration) totalDuration += duration } averageDuration := totalDuration / time.Duration(count) sort.Slice(durations, func(i, j int) bool { return durations[i] < durations[j] }) fmt.Printf("run %v timers with average=%v, pct50=%v, pct99=%v\n", count, averageDuration, durations[count/2], durations[int(float64(count)*0.99)]) } ``` 注意:由于机器和性能的不同,多次运行测试可能会有不一样的结果。 这段代码开了 N 个 Goroutine 并在每一个 Goroutine 中运行一个定时器,我们会在定时器到期时将开始计时到定时器到期所用的时间加入 Channel 并用于之后的统计,在函数的最后我们会计算出 N 个 Goroutine 中定时器到期时间的平均数、50 分位数和 99 分位数: ``` $ go test ./... -v === RUN TestTimers run 1000 timers with average=10.367111ms, pct50=10.234219ms, pct99=10.913219ms run 2000 timers with average=10.431598ms, pct50=10.37367ms, pct99=11.025823ms run 5000 timers with average=11.873773ms, pct50=11.986249ms, pct99=12.673725ms run 10000 timers with average=11.954716ms, pct50=12.313613ms, pct99=13.507858ms run 20000 timers with average=11.456237ms, pct50=10.625529ms, pct99=25.246254ms run 50000 timers with average=21.223818ms, pct50=14.792982ms, pct99=34.250143ms run 100000 timers with average=36.010924ms, pct50=31.794761ms, pct99=128.089527ms run 500000 timers with average=176.676498ms, pct50=138.238588ms, pct99=676.967558ms --- PASS: TestTimers (1.21s) ``` 我们将上述代码输出的结果绘制成如下图所示的折线图,其中横轴是并行定时器的个数,纵轴表示定时器从开始到触发时间的差值,三个不同的线分别表示时间的平均值、50 分位数和 99 分位数: ![](/media/202302/2023-02-22_134231_5644310.6623032490851471.png) 虽然测试的数据可能有一些误差,但是从图中我们也能得出一些跟定时器性能和现象有关的结论: 定时器触发的时间一定会晚于创建时传入的时间,假设定时器需要等待 10ms 触发,那它触发的时间一定是晚于 10ms 的; 当并发的定时器数量达到 5000 时,定时器的平均误差达到了 ~18%,99 分位数上的误差达到了 ~26%; 并发定时器的数量超过 5000 之后,定时器的误差就变得非常明显,不能有效、准确地完成计时任务; 这其实也是因为定时器从开始到触发的时间间隔非常短,当我们将计时的时间改到 100ms 时就会发现性能问题有比较明显的改善: ![](/media/202302/2023-02-22_134237_6263120.1176326435417534.png) 哪怕并行运行了 10w 个定时器,99 分位数的误差也只有 ~12%,我们其实能够发现Go语言标准库中的定时器在计时时间较短并且并发较高时有着非常明显的问题,所以在一些性能非常敏感的基础服务中使用定时器一定要非常注意,它可能达不到我们预期的效果。 不过哪怕我们不主动使用定时器,而是使用 context.WithDeadline 这种方法,由于它底层也会使用定时器实现,所以仍然会受到影响。 # 总结 Go语言的定时器在并发编程起到了非常重要的作用,它能够为我们提供比较准确的相对时间,基于它的功能,标准库中还提供了计时器、休眠等接口能够帮助我们在Go语言程序中更好地处理过期和超时等问题。 标准库中的定时器在大多数情况下是能够正常工作并且高效完成任务的,但是在遇到极端情况或者性能敏感场景时,它可能没有办法胜任,而在 10ms 的这个粒度下,目前也没有找到能够使用的定时器实现,一些使用时间轮算法的开源库也不能很好地完成这个任务。
Nathan
Feb. 22, 2023, 1:46 p.m.
转发文档
Collection documents
Last
Next
手机扫码
Copy link
手机扫一扫转发分享
Copy link
Markdown文件
PDF文件
Docx文件
share
link
type
password
Update password