Golang笔记
Golang相关配置
golang 配置goproxy可选的地址
IDEA/Goland使用WSL作为默认Terminal
GoLand 2022.1-X专业版激活
Win下用WSL作为Goland终端交叉编译
MacOS下在Goland的Terminal中使用‘ll’命令无效
GoLand 2024.1.X专业版激活
Golang LeeCode练习题
一 Golang数组问题
28. [简单] 寻找数组的中心下标
27. [简单] 数组的度
26. [简单] 最长连续递增序列
25. [简单] 非递减数列
24. [简单] 图片平滑器
23. [简单] 子数组最大平均数 I
22. [简单] 重塑矩阵
21. [简单] 数组拆分 I
20. [简单] 最大连续1的个数
19. [简单] 找到所有数组中消失的数字
18. [简单] 移动零
17. [简单] 丢失的数字
16. [简单] 汇总区间
15. [简单] 存在重复元素 II
14. [简单] 存在重复元素
13. [简单] 多数元素
12. [简单] 两数之和 II
11. [简单] 买卖股票的最佳时机 II
10. [简单] 买卖股票的最佳时机
09. [简单] 杨辉三角 II
08. [简单] 杨辉三角
07. [简单] 合并两个有序数组
06. [简单] 加一
05. [简单] 最大子序和
04. [简单] 搜索插入位置
03. [简单] 移除元素
02. [简单] 删除有序数组中的重复项
01. [简单] 两数之和
29. [简单] 至少是其他数字两倍的最大数
30. [简单] 托普利茨矩阵
31. [简单] 较大分组的位置
32. [简单] 转置矩阵
33. [简单] 公平的糖果棒交换
34. [简单] 单调数列
35. [简单] 按奇偶排序数组
36. [简单] 卡牌分组
37. [中等] 盛最多水的容器
38. [中等] 三数之和
39. [中等] 最接近的三数之和
40. [中等] 四数之和
41. [中等] 下一个排列
42. [中等] 搜索旋转排序数组
43. [中等] 在排序数组中查找元素的第一个和最后一个位置
44. [中等] 组合总和
45. [中等] 旋转图像
Golang完整学习记录
第一章 Go语言简介
20220519@基础环境
20220518@概述
第二章 Go语言基本语法
20220520@基础语法
20220521@正弦函数
20220523@数据类型转换
20220523@指针概念
20220524@堆栈和逃逸分析
20220526@(模拟)枚举
20220528@类型别名
20220528@注释的使用
20220528@关键字与标识符
20220528@运算符的优先级
20220528@数据类型的转换
第三章 Go语言容器
20220531@容器概念
20220531@数组详解
20220531@多维数组
20220605@切片详解
20220606@append的常见操作
20220606@切片元素修改
20220609@多维切片简述
20220609@map映射
20220612@并发(sync)Map
20220614@list(列表)
20220614@nil值/空值/零值
20220615@new和make
第四章 Go语言控制流程
20220615@if分支结构
20220615@for循环
20220615@range遍历
20220615@switch
20220616@goto标签
20220616@break和continue
20220616@聊天机器人
20220620@词频统计
20220622@缩进排序
20220622@二分查找算法
20220622@冒泡排序
20220623@分布式id生成器
第五章 Go语言函数
20220623@函数声明
20220623@函数参数传递效果
20220627@字符串的链式处理
20220630@匿名函数
20220704@函数类型接口
20220704@闭包(Closure)
20220706@可变参数
20220706@defer延迟语句
20220709@递归函数
20220713@处理运行错误
20220714@宕机(panic)
20220714@宕机恢复(recover)
20220715@计算函数耗时
20220718@内存缓存提升性能
20220718@哈希函数
20220720@Test功能测试
第六章 Go语言结构体
20220726@结构体定义
20220726@为结构体分配内存
20220730@实例化结构体
20220803@初始化结构体成员变量
20220810@构造函数
20220816@方法和接收器
20220816@为基本类型添加方法
20220816@使用事件系统实现事件响应和处理
20220817@类型内嵌和结构体内嵌
20220817@结构体内嵌模拟类的继承
20220817@初始化内嵌结构体
20220818@内嵌结构体成员名字冲突
20220823@使用匿名结构体解析JSON数据
20220827@垃圾回收和SetFinalizer
20220828@结构体数据保存为JSON格式
20220901@链表操作
20220908@数据I/O对象及操作
第七章 Go语言接口
20220911@接口定义
20220915@实现接口的条件
20220918@类型与接口的关系
20220918@接口的nil判断
20020918@类型断言简述
20220929@多输出实现日志系统
20221009@排序(by sort.Interface)
20221106@接口的嵌套组合
20221107@接口和类型之间的转换
20221109@空接口类型(interface{})
20221107@空接口实现任意值的字典保存
20221112@switch类型分支
20221201@Error接口返回错误信息
20221229@表达式求值器
20221229@实现Web服务器
20221229@部署Go程序到Linux
20221229@音乐播放器
20221230@有限状态机(FSM)
20221230@二叉树数据结构的应用
第八章 Go语言包概念
20230206@包的基本概念
20230212@封装简介及实现细节
20220212@GOPATH详解
20230212@常用内置包简介
20230212@自定义包
20230212@package(创建包)
20230212@import导入包
20230213@工厂模式自动注册
20230213@单例模式
20230214@sync包与锁
20230215@big包实现整数的高精度计算
20230215@使用图像包制作GIF动画
20230216@正则regexp包
20230218@time包:时间和日期
20230219@go mod包依赖管理工具
20230219@os包用法简述
20230219@flag包:命令行参数解析
20230219@生成二维码
20230219@Context(上下文)
20230220@示例:客户信息管理系统
20230221@发送电子邮件
20230222@Pingo插件化开发
20230221@定时器实现原理及作用
第九章 Go语言并发
20230224@并发简述(并发的优势)
20230224@goroutine(轻量级线程)
202300226@并发通信channe简介
20230226@竞争状态简述
20230227@GOMAXPROCS(并发运行性能)
20230227@并发和并行的区别
20230227@goroutine和coroutine的区别
20230227@通道(channel)—goroutine之间通信的管道
20230227@并发打印(借助通道实现)
20230227@单向通道——通道中的单行道
20230301@无缓冲的通道
20230301@带缓冲的通道
20230302@channel超时机制
20230302@通道的多路复用
20230302@RPC(模拟远程过程调用)
20230304@使用通道响应计时器的事件
20230306@关闭通道后继续使用通道
20230306@多核并行化
20230306@Telnet回音服务器-TCP服务器的基本结构
20230307@竞态检测——检测代码在并发环境下可能出现的问题
20230310@互斥锁(sync.Mutex)和读写互斥锁(sync.RWMutex)
20230310@等待组(sync.WaitGroup)
20230310@死锁、活锁和饥饿概述
20230311@封装qsort快速排序函数
20230311@CSP:并发通信顺序进程简述
20230312@聊天服务器
20230313@如何更加高效的使用并发
20230313@使用select切换协程
20230313@加密通信
第十章 Go语言反射
20230317@反射(reflection)简述
20230318@反射规则浅析
20230319@反射的性能和灵活性测试
20230322@通过反射获取类型信息(reflect.TypeOf()和reflect.Type)
20230325@通过反射获取指针指向的元素类型(reflect.Elem())
20230325@通过反射获取结构体的成员类型
20230325@结构体标签(Struct Tag)
20230325@通过反射获取值信息(reflect.ValueOf()和reflect.Value)
20230326@通过反射访问结构体成员的值
20230326@判断反射值的空和有效性(IsNil()和IsValid())
20230327@通过反射修改变量的值
20230327@通过类型信息创建实例
20230327@通过反射调用函数
20230327@依赖注入(inject库)
第十一章 文件处理
20230327@自定义数据文件
20230328@JSON文件的读写操作
20230402@XML文件的读写操作
20230402@使用Gob传输数据
20230404@纯文本文件的读写操作
20230405@二进制文件的读写操作
20230405@自定义二进制文件的读写操作
20230405@zip归档文件的读写操作
20230405@tar归档文件的读写操作
20230408@使用buffer读写文件
20230409@实现Unix中du命令统计文件
20230410@从INI文件中读取配置
20240411@文件的读写追加和复制
202304111@文件锁操作
第十二章 Go语言编译与工具
20230411@go build命令使用
20230413@clean命令-清除编译文件
20230413@run命令-编译并运行
20230413@fmt命令-格式化代码文件
20230413@install命令-编译并安装
20230414@go get命令-获取代码编译并安装
20230414@go generate命令-在编译前自动生成某类代码
20230415@go test命令-单元和性能测试
20230415@go pprof-性能分析命令
20230415@Go语言与C/C++进行交互
20230415@Go语言内存管理简述
20230415@Go语言垃圾回收
20230415@Go语言实现RSA和AES加解密
Golang简单实战
Golang根据书籍ISBN爬取豆瓣评分和评论数
Go编写使用指定的CPU百分比消耗CPU资源
Golang的日常应用
使用 FFmpeg 进行实时码率检测
WSL的远程开发应用
WSL2设置静态IP
在WSL2中启动SSH
使用CentOS7作为Goland终端的修改项
Golang学习路线
Go开发者成长路线图
本文档使用 MrDoc 发布
-
+
home page
20221230@二叉树数据结构的应用
树型结构(Tree)是一种重要的非线性数据结构,它为计算机应用中出现的具有层次关系的数据提供了一种有效的表示方法,比如文件目录结构、源程序语法结构等。 # 树的定义和基本术语 树是 n(n>=0) 个节点的有限集合 T。在任意一棵非空树中满足如下两个条件: - 有且仅有一个根节点(Root)。 - 当 n>1 时,其余节点可分为 m(m>=0) 个互不相交的有限集合 T1,T2,……,Tm,其中每一个集合本身又都是一棵树,并且称为根的子树(Subtree),如下图所示。 # 树型结构 ![](/media/202212/2022-12-30_141011_2118450.8678622304047892.png) 图:树型结构 由上图可知,树的定义是递归的,树是一种递归数据结构。树的这种定义为树的递归处理带来了很大方便,本节举例中几乎所有对树的处理都采用了递归算法。 >在了解树型结构时,还有几个基本概念非常重要,必须要掌握: >- 节点的度:树中每个节点具有的子树数,或后继节点数称为该节点的度。 >- 树的度:树中所有节点的度的最大值称为树的度。 >- 分支节点:度大于 0 的节点称为分支节点或非终端节点。 >- 叶子节点:度为 0 的节点称为叶子节点或终端节点。 >- 儿子节点:一个节点的后继称为该节点的儿子节点。 >- 父亲节点:一个节点称为其后继节点的父亲节点。 >- 子孙节点:一个节点的所有子树中的节点称为该节点的子孙节点。 >- 祖先节点:从根节点到达一个节点的路径上,通过的所有节点称为该节点的祖先节点。 >- 兄弟节点:具有同一父亲的节点相互称为兄弟节点。 >- 节点的层数:树是一种层次结构,根节点为第一层,其儿子节点为第二层,以此类推可以得到每个节点的层数。 >- 树的深度:树中节点的最大层数称为树的深度或高度。 >- 森林:0个或多个不相交的树的集合称为森林。 # 二叉树简介 二叉树是一种特殊的树,具有如下特点: - 二叉树中每个节点最多有两棵子树,称为左子树、右子树; - 左子树和右子树是有顺序的,有左右之分,次序不能随意颠倒; - 即使某个节点只有一个子树,也要区分左右子树。 除了这些基本特征外,还有如下一些特殊的二叉树。 **1) 斜树** 所有的节点只有左子树则称为左斜树;所有节点只有右子树则称为右斜树。如下图所示: 左斜树和右斜树 ![](/media/202212/2022-12-30_141224_8943100.8055018761669762.png) 图:左斜树和右斜树 **2) 满二叉树** 在一棵二叉树中,所有的分支结点都存在左子树和右子树,并且所有的叶子结点都在同一层上,这样的二叉树称为满二叉树。就是完美圆满的意思。 ![](/media/202212/2022-12-30_141304_8578650.14551105995332225.png) 图:满二叉树 满二叉树的特点如下所示: - 叶子只能出现在最下一层。 - 非叶子结点度一定是 2. - 在同样深度的二叉树中,满二叉树的结点个数最多,叶子树最多。 **3) 完全二叉树** 在一棵二叉树中,除最后一层外,若其余各层都是满的,最后一层要么是满的,要么在右边缺少若干个连续的节点,这样的二叉树被称为完全二叉树。满二叉树必须是完全二叉树,而完全二叉树不一定是满二叉树。 ![](/media/202212/2022-12-30_141345_8350360.06219378800332254.png) 图:完全二叉树 完全二叉树的特点如下所示: - 叶子结点只能出现在最下一层(满二叉树继承而来)。 - 最下层叶子结点一定集中在左部连续位置。 - 倒数第二层,如有叶子节点,一定出现在右部连续位置。 - 同样结点树的二叉树,完全二叉树的深度最小。 # 二叉树的链接存储结构 二叉树的存储方法有 - 顺序存储 - 链接存储 - 线索树存储 其中,顺序存储是使用数组来完成,而链接存储和线索树存储都使用了链表来完成。本节在二叉树的应用举例中使用了链接存储法。 ## 节点定义 在二叉树的链接存储结构中,通常采用的方法是:每个节点设置三个域,即值域、左指针域和右指针域,其结构如下图所示。 ![](/media/202212/2022-12-30_141456_8585620.8613504210129707.png) 图:二叉树链接存储结构 其中 Data 表示值域,用于存储放入节点中的数据元素,LeftChild 和 RightChild 分别表示左指针域和右指针域,用以分别存储左子树和右子树节点的指针地址。 链接存储的指针类型和节点定义如下: ```go type Node struct { Left *Node Data interface{} Right *Node } ``` 这里的 Data 字段可以是任意基本数据类型,如 int、float、string 等。链表所有节点的 Data 字段类型一致,比如同为 int 型或同为 string 型。在本节的应用举例中,二叉树节点的 Data 字段将被设置成空接口 interface{},这样二叉树的叶子节点将能够存储不同类型的数据,比如一个节点为 int 型,其他节点可以为 string 型等。 ## 接口定义 二叉树的应用处理功能主要包括: - 二叉树新节点的创建、初始化; - 二叉树的输出、度的计算、叶子节点统计等基本操作; - 二叉树的前序、中序、后序遍历等。 针对这些功能本例共定义了三个接口:Initer、Operater 和 Order。 ### 1) Initer 接口 当为二叉树创建了一个新节点时,Initer 接口提供了 SetData() 方法可以对节点的 Data 字段进行初始化。 ```go Initer 接口定义如下: type Initer interface { SetData (data interface{}) } ``` ### 2) Operater 接口 当已经生成了一个二叉树时,可以使用 Operater 接口提供的三个方法:PrintBT()、Depth() 和 LeafCount(),对二叉树进行输出、深度计算和叶子统计等基本操作。 Operater 接口定义如下: ```go type Operater interface { PrintBT() Depth() int LeafCount() int } ``` ### 3) Order 接口 对二叉树的遍历是一个重要的功能,这些功能在接口 Order 中实现,Order 接口中共定义了三个方法,分别是 PreOrder()、InOrder() 和 PostOrder(),分别可以实现前序遍历、中序遍历和后序遍历。 Order 接口的定义如下: ```go type Order interface { PreOrder() InOrder() PostOrder() } ``` 可以看到,在定义接口时,接口中的方法只需声明原型,而并不需在此实现。这些方法的实现可以在其他 Go 包文件中实现,或者直接由其他用户提供。 接口的意义也在于此,即同一个接口可以有不同的实现方式,甚至由不同的人去完成。 ## 方法的实现 通过接口的概念知道接口是方法的组合,而在定义接口时不必马上实现方法,方法可由设计者自己或交由其他人单独设计。本例三个接口中共有 7 个方法,下面分别介绍一下它们是怎么实现的。 ### 1) SetData 方法 SetData() 通过空接口 interface{},可以将任意类型数据赋值给二叉树节点的 Data 字段,实现二叉树对任意数据类型的存储。 ```go SetData 方法的定义如下: func (n *Node) SetData(data interface{}) { n.Data = data } ``` ### 2) PrintBT 方法 PrintBT() 调用底层函数 PrintBT(),输出一个给定二叉树的嵌套括号表示。 PrintBT 方法的定义如下: ```go func (n *Node) PrintBT() { PrintBT(n) } ``` ### 3) Depth 方法 Depth() 调用底层函数 Depth(),返回二叉树的深度。 Depth 方法的定义如下: ```go func (n *Node) Depth() int { return Depth(n) } ``` ### 4) LeafCount 方法 LeafCount() 调用底层函数 LeafCount(),返回二叉树的叶子节点数。 LeafCount 方法的定义如下: ```go func (n *Node) LeafCount() int { return LeafCount(n) } ``` ### 5) PreOrder 方法 PreOrder() 调用底层函数 PreOrder() 对二叉树进行前序遍历。 PreOrder 方法的定义如下: ```go func (n *Node) PreOrder() { PreOrder(n) } ``` ### 6) InOrder 方法 InOrder() 调用底层函数 InOrder() 对二叉树进行中序遍历。 InOrder 方法的定义如下: ```go func (n *Node) InOrder() { InOrder(n) } ``` ### 7) PostOrder 方法 PostOrder() 调用底层函数 PostOrder() 对二叉树进行后序遍历。 PostOrder 方法的定义如下: ```go func (n *Node) PostOrder() { PostOrder(n) } ``` # 底层函数设计 在面向对象程序设计中,上层方法的功能实现还要依赖底层函数,本例中大部分方法也是这样,现将所有底层函数一一列举如下。 ## 1) NewNode 函数 NewNode() 按照链接存储方式生成一个新的二叉树节点,参数 left 指向左指针域,参数 right 指向右指针域。 NewNode 函数的定义如下: ```go func NewNode(left, right *Node) *Node { return &Node{left, nil, right} } ``` ## 2) PrintBT 函数 PrintBT() 用于输出一个给定二叉树的嵌套括号表示,采用递归算法: 首先输出根节点,然后再依次输出左子树和右子树,在输出左子树前打印输出左括号“(”,在输出右子树后打印输出右括号“)”; 另外,依次输出的左、右子树要至少有一个不为空,若都为空就不必输出了。 PrintBT 函数的定义如下: ```go func PrintBT(n *Node) { if n != nil { fmt.Printf("%v", n.Data) if n.Left != nil || n.Right != nil { fmt.Printf("(") PrintBT(n.Left) if n.Right != nil { fmt.Printf(",") } PrintBT(n.Right) fmt.Printf(")") } } } ``` ## 3) Depth 函数 Depth() 用于计算二叉树的深度,采用递归算法: 若一棵二叉树为空,则其深度为 0; 否则,其深度等于左子树或右子树的最大深度加 1。 Depth 函数的定义如下: ```go func Depth(n *Node) int { var depleft, depright int if n == nil { return 0 } else { depleft = Depth(n.Left) depright = Depth(n.Right) if depleft > depright { return depleft + 1 } else { return depright + 1 } } } ``` ## 4) LeafCount 函数 LeafCount() 用于统计二叉树叶子节点数,采用递归算法: 若一棵二叉树为空,则其叶子节点数为 0; 若一棵二叉树的左、右子树均为空,则其叶子节点数为 1; 否则叶子数等于左子树与右子树叶子总数之和。 LeafCount 函数的定义如下: ```go func LeafCount(n *Node) int { if n == nil { return 0 } else if (n.Left == nil) && (n.Right == nil) { return 1 } else { return (LeafCount(n.Left) + LeafCount(n.Right)) } } ``` ## 5) PreOrder 函数 PreOrder() 可以对二叉树进行前序遍历,采用递归算法,按照先访问根节点,再访问左子树,最后访问右子树的次序访问二叉树中的所有节点,且每个节点仅访问一次。 PreOrder 函数的定义如下: ```go func PreOrder(n *Node) { if n != nil { fmt.Printf("%v", n.Data) PreOrder(n.Left) PreOrder(n.Right) } } ``` ## 6) InOrder 函数 InOrder() 可以对二叉树进行中序遍历,采用递归算法,按照先访问左子树,再访问根节点,最后访问右子树的次序访问二叉树中的所有节点,且每个节点仅访问一次。 InOrder 函数的定义如下: ```go func InOrder(n *Node) { if n != nil { PreOrder(n.Left) fmt.Printf("%v", n.Data) PreOrder(n.Right) } } ``` ## 7) PostOrder 函数 PostOrder() 可以对二叉树进行后序遍历,采用递归算法,按照先访问左子树,再访问右子树,最后访问根节点的次序访问二叉树中的所有节点,且每个节点仅访问一次。 PostOrder 函数的定义如下: ```go func PostOrder(n *Node) { PreOrder(n.Left) PreOrder(n.Right) fmt.Printf("%v", n.Data) } ``` # 二叉树基本应用测试 前面介绍了二叉树链接存储结构,以及节点定义、接口定义、方法实现和底层函数设计,并在包 btree 中实现。接下来将利用这些知识实现几个二叉树的基本应用,包括二叉树的创建、基本操作和遍历。 ## 二叉树创建 二叉树的创建过程一般如下: 首先调用 NewNode() 函数创建根节点,再调用 SetData() 方法初始化根节点。 使用同样的方法创建左子树和右子树,并将左、右子树链接到根节点上。 如果左、右子树有叶子节点,则插入叶子节点并和左、右子树建立链接。 【示例 1】二叉树的建立,本例将演示如何使用 Initer 接口实现根节点的初始化。 ```go // 二叉树的建立 package main import( "fmt" "btree" ) func main() { //创建根节点 root := NewNode(nil, nil) var it Initer it = root it.SetData("root node") //创建左子树 a := NewNode(nil, nil) a.SetData("left node") al := NewNode(nil, nil) //左叶子节点 al.SetData(100) ar := NewNode(nil, nil) //右叶子节点 ar.SetData(3.14) a.Left = al a.Right = ar //创建右子树 b := NewNode(nil, nil) b.SetData("right node") root.Left = a root.Right = b root.PrintBT() } ``` 编译并运行该程序,输出结果为: ``` root node (left node ( 100,3.14 ),right node) ``` 通过输出结果可以看出,在示例中首先创建了根节点 root node,然后创建左子树 left node 和右子树 right node。左子树有两个叶子节点,左叶子的值为 int 型 "100",右叶子的值为 float 型 "3.14"。即该二叉树可以存储不同类型的值,这些都是由空接口 interface{} 实现的。 ## 二叉树基本操作 对一个已存在的二叉树的基本操作包括二叉树的输出、深度计算、叶子数统计等,在下面将演示如何使用 Operater 接口实现这些基本操作。 【示例 2】二叉树的基本操作。 ```go // 二叉树的基本操作 package main import( "fmt" "btree" ) func main() { //创建二叉树 root := NewNode(nil, nil) root.SetData("root node") a := NewNode(nil, nil) a.SetData("left node") al := NewNode(nil, nil) al.SetData(100) ar := NewNode(nil, nil) ar.SetData(3.14) a.Left = al a.Right = ar b := NewNode(nil, nil) b.SetData("right node") root.Left = a root.Right = b // 使用 Operater 接口实现对二叉树的基本操作 var it Operater it = root it.PrintBT() fmt.Println() fmt.Println("The depths of the Btree is:", it.Depth()) fmt.Println("The leaf counts of the Btree is:", it.LeafCount()) } ``` 编译并运行该程序,输出结果为: ``` root node ( left node (100,3.14),right node ) The depths of the Btree is: 3 The leaf counts of the Btree is: 3 ``` 通过输出结果可以看出,上面示例中二叉树的深度为 3,叶子节点数也为 3,这和验证结果完全一致。另外,对二叉树的操作还有査找、插入、删除节点等,大家可以在上面的基础上自行完成。 ## 二叉树遍历 在二叉树的一些基本应用中,常常需要在树中查找具有某种特征的节点,或者对树中全部节点逐一进行某种处理,这就是二叉树的遍历(Traversing binary tree)。即如何按某条搜索路径访问树中的每个节点,使得每个节点均能被访问一次,而且仅被访问一次。 二叉树的遍历方法一般分为前序遍历、中序遍历和后序遍历,下面示例将演示如何使用 Order 接口实现二叉树的三种遍历。 【示例 3】二叉树的遍历。 ```go // 二叉树的遍历 package main import( "fmt" "btree" ) func main() { //创建二叉树 root := NewNode(nil, nil) root.SetData("root node") a := NewNode(nil, nil) a.SetData("left node") al := NewNode(nil, nil) al.SetData(100) ar := NewNode(nil, nil) ar.SetData(3.14) a.Left = al a.Right = ar b := NewNode(nil, nil) b.SetData("right node") root.Left = a root.Right = b // 使用 Order 接口实现对二叉树的基本操作 var it Order it = root it.PreOrder() //先序遍历 fmt.Println() it.InOrder() //中序遍历 fmt.Println() it.PostOrder() //后序遍历 } ``` 编译并运行该程序,输出结果为: ``` root node left node 100 3.14 right node left node 100 3.14 root node right node left node 100 3.14 right node root node ``` 通过输出结果可以看出,示例的三种遍历方法输出结果和验证结果完全一致。当然在对二叉树进行遍历的同时,用户也可以对树中的节点做各种处理,比如修改节点信息等。
Nathan
Dec. 30, 2022, 2:20 p.m.
转发文档
Collection documents
Last
Next
手机扫码
Copy link
手机扫一扫转发分享
Copy link
Markdown文件
PDF文件
Docx文件
share
link
type
password
Update password