Golang笔记
Golang相关配置
golang 配置goproxy可选的地址
IDEA/Goland使用WSL作为默认Terminal
GoLand 2022.1-X专业版激活
Win下用WSL作为Goland终端交叉编译
MacOS下在Goland的Terminal中使用‘ll’命令无效
GoLand 2024.1.X专业版激活
Golang LeeCode练习题
一 Golang数组问题
28. [简单] 寻找数组的中心下标
27. [简单] 数组的度
26. [简单] 最长连续递增序列
25. [简单] 非递减数列
24. [简单] 图片平滑器
23. [简单] 子数组最大平均数 I
22. [简单] 重塑矩阵
21. [简单] 数组拆分 I
20. [简单] 最大连续1的个数
19. [简单] 找到所有数组中消失的数字
18. [简单] 移动零
17. [简单] 丢失的数字
16. [简单] 汇总区间
15. [简单] 存在重复元素 II
14. [简单] 存在重复元素
13. [简单] 多数元素
12. [简单] 两数之和 II
11. [简单] 买卖股票的最佳时机 II
10. [简单] 买卖股票的最佳时机
09. [简单] 杨辉三角 II
08. [简单] 杨辉三角
07. [简单] 合并两个有序数组
06. [简单] 加一
05. [简单] 最大子序和
04. [简单] 搜索插入位置
03. [简单] 移除元素
02. [简单] 删除有序数组中的重复项
01. [简单] 两数之和
29. [简单] 至少是其他数字两倍的最大数
30. [简单] 托普利茨矩阵
31. [简单] 较大分组的位置
32. [简单] 转置矩阵
33. [简单] 公平的糖果棒交换
34. [简单] 单调数列
35. [简单] 按奇偶排序数组
36. [简单] 卡牌分组
37. [中等] 盛最多水的容器
38. [中等] 三数之和
39. [中等] 最接近的三数之和
40. [中等] 四数之和
41. [中等] 下一个排列
42. [中等] 搜索旋转排序数组
43. [中等] 在排序数组中查找元素的第一个和最后一个位置
44. [中等] 组合总和
45. [中等] 旋转图像
Golang完整学习记录
第一章 Go语言简介
20220519@基础环境
20220518@概述
第二章 Go语言基本语法
20220520@基础语法
20220521@正弦函数
20220523@数据类型转换
20220523@指针概念
20220524@堆栈和逃逸分析
20220526@(模拟)枚举
20220528@类型别名
20220528@注释的使用
20220528@关键字与标识符
20220528@运算符的优先级
20220528@数据类型的转换
第三章 Go语言容器
20220531@容器概念
20220531@数组详解
20220531@多维数组
20220605@切片详解
20220606@append的常见操作
20220606@切片元素修改
20220609@多维切片简述
20220609@map映射
20220612@并发(sync)Map
20220614@list(列表)
20220614@nil值/空值/零值
20220615@new和make
第四章 Go语言控制流程
20220615@if分支结构
20220615@for循环
20220615@range遍历
20220615@switch
20220616@goto标签
20220616@break和continue
20220616@聊天机器人
20220620@词频统计
20220622@缩进排序
20220622@二分查找算法
20220622@冒泡排序
20220623@分布式id生成器
第五章 Go语言函数
20220623@函数声明
20220623@函数参数传递效果
20220627@字符串的链式处理
20220630@匿名函数
20220704@函数类型接口
20220704@闭包(Closure)
20220706@可变参数
20220706@defer延迟语句
20220709@递归函数
20220713@处理运行错误
20220714@宕机(panic)
20220714@宕机恢复(recover)
20220715@计算函数耗时
20220718@内存缓存提升性能
20220718@哈希函数
20220720@Test功能测试
第六章 Go语言结构体
20220726@结构体定义
20220726@为结构体分配内存
20220730@实例化结构体
20220803@初始化结构体成员变量
20220810@构造函数
20220816@方法和接收器
20220816@为基本类型添加方法
20220816@使用事件系统实现事件响应和处理
20220817@类型内嵌和结构体内嵌
20220817@结构体内嵌模拟类的继承
20220817@初始化内嵌结构体
20220818@内嵌结构体成员名字冲突
20220823@使用匿名结构体解析JSON数据
20220827@垃圾回收和SetFinalizer
20220828@结构体数据保存为JSON格式
20220901@链表操作
20220908@数据I/O对象及操作
第七章 Go语言接口
20220911@接口定义
20220915@实现接口的条件
20220918@类型与接口的关系
20220918@接口的nil判断
20020918@类型断言简述
20220929@多输出实现日志系统
20221009@排序(by sort.Interface)
20221106@接口的嵌套组合
20221107@接口和类型之间的转换
20221109@空接口类型(interface{})
20221107@空接口实现任意值的字典保存
20221112@switch类型分支
20221201@Error接口返回错误信息
20221229@表达式求值器
20221229@实现Web服务器
20221229@部署Go程序到Linux
20221229@音乐播放器
20221230@有限状态机(FSM)
20221230@二叉树数据结构的应用
第八章 Go语言包概念
20230206@包的基本概念
20230212@封装简介及实现细节
20220212@GOPATH详解
20230212@常用内置包简介
20230212@自定义包
20230212@package(创建包)
20230212@import导入包
20230213@工厂模式自动注册
20230213@单例模式
20230214@sync包与锁
20230215@big包实现整数的高精度计算
20230215@使用图像包制作GIF动画
20230216@正则regexp包
20230218@time包:时间和日期
20230219@go mod包依赖管理工具
20230219@os包用法简述
20230219@flag包:命令行参数解析
20230219@生成二维码
20230219@Context(上下文)
20230220@示例:客户信息管理系统
20230221@发送电子邮件
20230222@Pingo插件化开发
20230221@定时器实现原理及作用
第九章 Go语言并发
20230224@并发简述(并发的优势)
20230224@goroutine(轻量级线程)
202300226@并发通信channe简介
20230226@竞争状态简述
20230227@GOMAXPROCS(并发运行性能)
20230227@并发和并行的区别
20230227@goroutine和coroutine的区别
20230227@通道(channel)—goroutine之间通信的管道
20230227@并发打印(借助通道实现)
20230227@单向通道——通道中的单行道
20230301@无缓冲的通道
20230301@带缓冲的通道
20230302@channel超时机制
20230302@通道的多路复用
20230302@RPC(模拟远程过程调用)
20230304@使用通道响应计时器的事件
20230306@关闭通道后继续使用通道
20230306@多核并行化
20230306@Telnet回音服务器-TCP服务器的基本结构
20230307@竞态检测——检测代码在并发环境下可能出现的问题
20230310@互斥锁(sync.Mutex)和读写互斥锁(sync.RWMutex)
20230310@等待组(sync.WaitGroup)
20230310@死锁、活锁和饥饿概述
20230311@封装qsort快速排序函数
20230311@CSP:并发通信顺序进程简述
20230312@聊天服务器
20230313@如何更加高效的使用并发
20230313@使用select切换协程
20230313@加密通信
第十章 Go语言反射
20230317@反射(reflection)简述
20230318@反射规则浅析
20230319@反射的性能和灵活性测试
20230322@通过反射获取类型信息(reflect.TypeOf()和reflect.Type)
20230325@通过反射获取指针指向的元素类型(reflect.Elem())
20230325@通过反射获取结构体的成员类型
20230325@结构体标签(Struct Tag)
20230325@通过反射获取值信息(reflect.ValueOf()和reflect.Value)
20230326@通过反射访问结构体成员的值
20230326@判断反射值的空和有效性(IsNil()和IsValid())
20230327@通过反射修改变量的值
20230327@通过类型信息创建实例
20230327@通过反射调用函数
20230327@依赖注入(inject库)
第十一章 文件处理
20230327@自定义数据文件
20230328@JSON文件的读写操作
20230402@XML文件的读写操作
20230402@使用Gob传输数据
20230404@纯文本文件的读写操作
20230405@二进制文件的读写操作
20230405@自定义二进制文件的读写操作
20230405@zip归档文件的读写操作
20230405@tar归档文件的读写操作
20230408@使用buffer读写文件
20230409@实现Unix中du命令统计文件
20230410@从INI文件中读取配置
20240411@文件的读写追加和复制
202304111@文件锁操作
第十二章 Go语言编译与工具
20230411@go build命令使用
20230413@clean命令-清除编译文件
20230413@run命令-编译并运行
20230413@fmt命令-格式化代码文件
20230413@install命令-编译并安装
20230414@go get命令-获取代码编译并安装
20230414@go generate命令-在编译前自动生成某类代码
20230415@go test命令-单元和性能测试
20230415@go pprof-性能分析命令
20230415@Go语言与C/C++进行交互
20230415@Go语言内存管理简述
20230415@Go语言垃圾回收
20230415@Go语言实现RSA和AES加解密
Golang简单实战
Golang根据书籍ISBN爬取豆瓣评分和评论数
Go编写使用指定的CPU百分比消耗CPU资源
Golang的日常应用
使用 FFmpeg 进行实时码率检测
WSL的远程开发应用
WSL2设置静态IP
在WSL2中启动SSH
使用CentOS7作为Goland终端的修改项
Golang学习路线
Go开发者成长路线图
本文档使用 MrDoc 发布
-
+
首页
20221229@表达式求值器
在本节中,我们将创建简单算术表达式的一个求值器。我们将使用一个接口 Expr 来代表这种语言中的任意一个表达式。现在,这个接口没有任何方法,但稍后我们会逐个添加。 ```go // Expr:算术表达式 type Expr interface{} ``` 我们的表达式语言包括浮点数字面量,二元操作符 +、-、*、/,一元操作符 -x 和 +x,函数调用 pow(x,y)、sin(x) 和 sqrt(x),变量(比如 x 和 pi),当然,还有圆括号和标准的操作符优先级。所有的值都是 float64 类型。下面是几个示例表达式: ```go sqrt(A / pi) pow(x, 3) + pow(y, 3) (F - 32) * 5 / 9 ``` 下面 5 种具体类型代表特定类型的表达式。Var 代表变量应用(很快我们将了解到为什么这个类型需要导岀)。literal 代表浮点数常量。unary 和 binary 类型代表有一个或者两个操作数的操作符表达式,而操作数则可以任意的 Expr。call 代表函数调用,这里限制它的 fn 字段只能是 pow、sin 和 sqrt。 ```go // Var 表示一个变量,比如 x type Var string // literal 是一个数字常量,比如 3.141 type literal float64 // unary 表示一元操作符表达式,比如-x type unary struct { op rune // '+', '-' 中的一个 x Expr } // binary 表示二元操作符表达式,比如 x+y type binary struct { op rune // '+', '-', '*', '/' 中的一个 x, y Expr } // call 表示函数调用表达式,比如 sin(x) type call struct { fn string // one of "pow", "sin", "sqrt" 中的一个 args []Expr } ``` 要对包含变量的表达式进行求值,需要一个上下文 (environment) 来把变量映射到数值: ```go type Env map[Var]float64 ``` 我们还需要为每种类型的表达式定义一个 Eval 方法来返回表达式在一个给定上下文下的值。既然每个表达式都必须提供这个方法,那么可以把它加到 Expr 接口中。这个包只导出了类型 Expr、Env 和 Var。客户端可以在不接触其他表达式类型的情况下使用这个求值器。 ```go type Expr interface { // Eval 返回表达式在 env 上下文下的值 Eval(env Env) float64 } ``` 下面是具体的 Eval 方法。Var 的 Eval 方法从上下文中查询结果,如果变量不存在则返回 0 literal 的 Eval 方法则直接返冋本身的值。 ```go func (v Var) Eval(env Env) float64 { return env[v] } func (l literal) Eval(_ Env) float64 { return float64(l) } ``` unary 和 binary 的 Eval 方法首先对它们的操作数递归求值,然后应用 op 操作。我们不把除以 0 或者无穷大当做错误(尽管它们生成的结果显然不是有穷数)。最后,call 方法先对 pow、sin 或者 sqrt 函数的参数求值,再调用 math 包中的对应函数。 ```go func (u unary) Eval(env Env) float64 { switch u.op { case '+': return +u.x.Eval(env) case '-': return -u.x.Eval(env) } panic(fmt.Sprintf("unsupported unary operator: %q", u.op)) } func (b binary) Eval(env Env) float64 { switch b.op { case '+': return b.x.Eval(env) + b.y.Eval(env) case '-': return b.x.Eval(env) - b.y.Eval(env) case '*1: return b.x.Eval(env) * b.y.Eval(env) case '/': return b.x.Eval(env) / b.y.Eval(env) } panic(fmt.Sprintf("unsupported binary operator: %q", b.op)) } func (c call) Eval(env Env) float64 { switch c.fn { case "pow": return math.Pow(c.args[0].Eval(env), c.args[1].Eval(env) case "sin": return math.Sin(c.args[0].Eval(erw)) case "sqrt": return math.Sqrt(c.args[0].Eval(env)) } panic(fmt.Sprintf("unsupported function call: %s", c.fn)) } ``` 某些方法可能会失败,比如 call 表达式可能会遇到未知的函数,或者参数数量不对。也有可能用“!”或者“<”这类无效的操作符构造了一个 unary 或 binary 表达式(尽管后面的 Parse 函数不会产生这样的结果)。这些错误都会导致 Eval 崩溃。 其他错误(比如对一个上下文中没有定义的变量求值)仅会导致返回不正确的结果。所有这些错误都可以在求值之前做检查来发现。后面的 Check 方法就负责完成这个任务,但我们先测试 Eval。 下面的 TestEval 函数用于测试求值器,它使用 testing 包。我们知道调用 t.Errorf 来报告错误。这个函数遍历一个表格,表格中定义了三个表达式并为每个表达式准备了不同上下文。第一个表达式用于根据圆面积 A 求半径,第二个用于计算两个变量 x 和 y 的立方和,第三个把华氏温度 F 转为摄氏温度。 ```go func TestEval(t *testing.T) { tests := []struct { expr string env Env want string }{ {"sqrt(A / pi)", Env{"A": 87616, "pi": math.Pi}, "167"}, {"pow(x, 3) + pow(y, 3)", Env{"x": 12, "y": 1}, "1729"}, {"pow(x, 3) + pow(y, 3)", Env{"x": 9, "y": 10}, "1729"}, {"5/9 * (F - 32)", Env{"F": -40}, "-40"}, {"5/9 * (F - 32)", Env{"F": 32}, "0"}, {"5/9 * (F - 32)", Env{"F": 212}, "100"}, } var prevExpr string for _, test := range tests { // 仅在表达式变更时才输出 if test.expr != prevExpr { fmt.Printf("\n%s\n", test.expr) prevExpr = test.expr } expr, err := Parse(test.expr) if err != nil { t.Error(err) // 解析出错 continue } got := fmt.Sprintf("%.6g", expr.Eval(test.env)) fmt.Printf("\t%v => %s\n", test.env, got) if got != test.want { t.Errorf("%s.Eval() in %v = %q, want %q\n", test.expr, test.env, got, test.want) } } } ``` 对于表格中的每一行记录,该测试先解析表达式,在上下文中求值,再输出表达式。这里没有足够的空间来显示 Parse 函数,但可以通过 go get 来下载源码,自行查看。 go test 命令可用于运行包的测试: ```go $ go test -v gopl.io/ch7/eval ``` 启用 -v 选项后可以看到测试的输出,通常情况下对于结果正确的测试输出就不显示了。下面就是测试中 fmt.Printf 语句输岀的内容。 ```go sqrt(A / pi) map[A:87616 pi:3.141592653589793] => 167 pow(x, 3) + pow(y, 3) map[x:12 y:1] => 1729 map[x:9 y:10] => 1729 5 / 9 * (F - 32) map[F:-40] => -40 map[F:32] => 0 map[F:212] => 100 ``` 幸运的是,到现在为止所有的输入都是合法的,但这种幸运是不能持久的。即使在解释性语言中,通过语法检查来发现静态错误(即不用运行程序也能检测出来的错误)也是很常见的。通过分离静态检查和动态检查,我们可以更快发现错误,也可以只在运行前检查一次,而不用在表达式求值时每次都检查。 让我们给 Expr 方法加上另外一个方法。Check 方法用于在表达式语法树上检查静态错误。它的 vars 参数将稍后解释。 ```go type Expr interface { Eval(env Env) float64 // Check 方法报告表达式中的错误,并把表达式中的变量加入 Vars 中 Check(vars map[Var]bool) error } ``` 具体的 Check 方法如下所示。literal 和 Var 的求值不可能出错,所以 Check 方法返回 nil。unary 和 binary 的方法首先检查操作符是否合法,再递归地检查操作数。类似地,call 的方法首先检查函数是否是已知的,然后检查参数个数是否正确,最后递归检查每个参数。 ```go func (v Var) Check(vars map[Var]bool) error { vars[v] = true return nil } func (literal) Check(vars map[Var]bool) error { return nil } func (u unary) Check(vars map[Var]bool) error { if !strings.ContainsRune("+-", u.op) { return fmt.Errorf("unexpected unary op %q", u.op) } return u.x.Check(vars) } func (b binary) Check(vars map[Var]bool) error { if !strings.ContainsRune("+-*/", b.op) { return fmt.Errorf("unexpected binary op %q", b.op) } if err := b.x.Check(vars); err != nil { return err } return b.y.Check(vars) } func (c call) Check(vars map[Var]bool) error { arity, ok := numParams[c.fn] if !ok { return fmt.Errorf("unknown function %q", c.fn) } if len(c.args) != arity { return fmt.Errorf("call to %s has %d args, want %d", c.fn, len(c.args), arity) } for _, arg := range c.args { if err := arg.Check(vars); err != nil { return err } } return nil } var numParams = map[string]int{"pow",: 2, "sin": 1, "sqrt": 1} ``` 下面分两列展示了一些有错误的输入,以及它们触发的错误。Parse 函数(没有显示)报告了语法错误,Check 方法报告了语义错误。 ```go x % 2 unexpected '%' math.Pi unexpected '.' !true unexpected '!' "hello" unexpected '"' log(10) unknown function "log" sqrt(1, 2) call to sqrt has 2 args, want 1 ``` Check 的输入参数是一个 Ver 集合,它收集在表达中发现的变量名。要让表达式能成功求值,上下文必须包含所有的这些变量。从逻辑上来讲,这个集合应当是 Check 的输出结果而不是输入参数,但因为这个方法是递归调用的,在这种情况下使用参数更为方便。调用方在最初调用时需要提供一个空的集合。 既然我们可以对字符串形式的表达式进行解析、检查和求值,那么就可以构建一个 Web 应用,在运行时从客户端接收一个表达式,并绘制函数的曲面图。可以使用 vars 集合来检查表达式是一个只有两个变量 x、y 的函数(为了简单起见,还提供了半径 r,所以实际上是 3 个变量)。使用 Check 方法来拒绝掉不规范的表达式,避免了在接下来的 40000 次求值中重复检查(4 个象限中 100 x 100 的格子)。 下面的 parseAndCheck 函数组合了解析和检查步骤: ```go import "gopl.io/ch7/eval" func parseAndCheck(s string) (eval.Expr, error) { if s == "" { return nil, fmt.Errorf("empty expression") } expr, err := eval.Parse(s) if err != nil { return nil, err } vars := make(map[eval.Var]bool) if err := expr.Check(vars); err != nil { return nil, err } for v := range vars { if v != "x" && v != "y" && v != "r" { return nil, fmt.Errorf("undefined variable: %s", v) } } return expr, nil } ``` 要构造完这个 Web 应用,仅需要增加下面的 plot 函数,其函数签名与 http.HandlerFunc 类似: ```go func plot(w http.ResponseWriter, r *http.Request) { r.ParseForm() expr, err := parseAndCheck(r.Form.Get("expr")) if err != nil { http.Error(w, "bad expr: "+err.Error(), http.StatusBadRequest) return } w.Header().Set("Content-Type", "image/syg+xml") surface(w, func(x, y float64) float64 { r := math.Hypot(x, y) // 与(0,0)之间的距离 return expr.Eval(eval.Env{"x": x, "y": y, "r" : r}) }) } ``` plot 函数解析并检查 HTTP 请求中的表达式,并用它来创建一个有两个变量的匿名函数。这个匿名函数与原始曲面图绘制程序中的f有同样的签名,且能对用户提供的表达式进行求值。上下文定义了 x、y 和半径 r。 最后,plot 调用了 surface 函数,surface 函数来自 gop1.io/ch3/surface 中的 main 函数,略做修改,加了参数用于接受绘制函数和输出用的 io.Writer,原始版本直接使用了函数 f 和 os.Stdout。下图显示了用这个程序绘制的三张曲面图。 三个函数的曲面图(1)(a)  三个函数的曲面图(2)(b)  三个函数的曲面图(3)(c)  图:三个函数的曲面图:a) sin(-x)*pow(1.5, -r); b) pow(2, sin(y))*pow(2, sin(x))/12; c) sin (x*y/10)/10
Nathan
2022年12月29日 13:17
转发文档
收藏文档
上一篇
下一篇
手机扫码
复制链接
手机扫一扫转发分享
复制链接
Markdown文件
PDF文件
Docx文件
分享
链接
类型
密码
更新密码